{"title":"在手术诱导的骨关节炎动物模型中,通过AAV共同递送IL-1Ra和SOX9可抑制炎症并促进软骨修复。","authors":"Kaiyi Zhou, Meng Yuan, Jiabao Sun, Feixu Zhang, Xinting Li, Xiao Xiao, Xia Wu","doi":"10.1038/s41434-025-00515-y","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models. scAAV-oIL-1Ra-I1/2 injected directly into the joint in both MMT/ACLT-induced KOA model rat improved abnormal gait (increasing footprint area and pressure), subchondral bone lesions, and significantly reduced cartilage wear and pathological scores. In the MMT-induced KOA rabbit model, weight-bearing asymmetry (indicating pain) improved after 8 weeks of scAAV-oIL-1Ra-I1/2 administration, and X-ray showed decreased K-L scores (severity grade), reduced cartilage loss, and lower pathology scores compared to untreated animals. Additionally, sex-determining region Y-type high mobility group box 9 (SOX9) was co-delivered with IL-1Ra via AAV in ACLT + MMT-induced KOA rats. The combined treatment significantly alleviated subchondral bone lesions, cartilage destruction, synovial inflammation, and pathological scores, demonstrating superior efficacy compared to either treatment administered alone. Co-delivering IL-1Ra and SOX9 inhibited IL-1 mediated inflammatory signaling, maintained cartilage homeostasis, and promoted its repair in KOA models, suggesting potential for clinical use.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models.\",\"authors\":\"Kaiyi Zhou, Meng Yuan, Jiabao Sun, Feixu Zhang, Xinting Li, Xiao Xiao, Xia Wu\",\"doi\":\"10.1038/s41434-025-00515-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models. scAAV-oIL-1Ra-I1/2 injected directly into the joint in both MMT/ACLT-induced KOA model rat improved abnormal gait (increasing footprint area and pressure), subchondral bone lesions, and significantly reduced cartilage wear and pathological scores. In the MMT-induced KOA rabbit model, weight-bearing asymmetry (indicating pain) improved after 8 weeks of scAAV-oIL-1Ra-I1/2 administration, and X-ray showed decreased K-L scores (severity grade), reduced cartilage loss, and lower pathology scores compared to untreated animals. Additionally, sex-determining region Y-type high mobility group box 9 (SOX9) was co-delivered with IL-1Ra via AAV in ACLT + MMT-induced KOA rats. The combined treatment significantly alleviated subchondral bone lesions, cartilage destruction, synovial inflammation, and pathological scores, demonstrating superior efficacy compared to either treatment administered alone. Co-delivering IL-1Ra and SOX9 inhibited IL-1 mediated inflammatory signaling, maintained cartilage homeostasis, and promoted its repair in KOA models, suggesting potential for clinical use.</p>\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41434-025-00515-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00515-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models.
Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models. scAAV-oIL-1Ra-I1/2 injected directly into the joint in both MMT/ACLT-induced KOA model rat improved abnormal gait (increasing footprint area and pressure), subchondral bone lesions, and significantly reduced cartilage wear and pathological scores. In the MMT-induced KOA rabbit model, weight-bearing asymmetry (indicating pain) improved after 8 weeks of scAAV-oIL-1Ra-I1/2 administration, and X-ray showed decreased K-L scores (severity grade), reduced cartilage loss, and lower pathology scores compared to untreated animals. Additionally, sex-determining region Y-type high mobility group box 9 (SOX9) was co-delivered with IL-1Ra via AAV in ACLT + MMT-induced KOA rats. The combined treatment significantly alleviated subchondral bone lesions, cartilage destruction, synovial inflammation, and pathological scores, demonstrating superior efficacy compared to either treatment administered alone. Co-delivering IL-1Ra and SOX9 inhibited IL-1 mediated inflammatory signaling, maintained cartilage homeostasis, and promoted its repair in KOA models, suggesting potential for clinical use.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.