Hongmei Zhang, Jiasong Duan, Luhang Han, Naznin Alam, Meredith Ray, Fen Yang, Yu Jiang, Susan Ewart, John W Holloway, Wilfried Karmaus, Shu-Li Wang, S Hasan Arshad
{"title":"出生时的DNA甲基化和从出生到青春期的IgE轨迹,白人和亚洲人之间的模式不同。","authors":"Hongmei Zhang, Jiasong Duan, Luhang Han, Naznin Alam, Meredith Ray, Fen Yang, Yu Jiang, Susan Ewart, John W Holloway, Wilfried Karmaus, Shu-Li Wang, S Hasan Arshad","doi":"10.1080/17501911.2025.2453412","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.</p><p><strong>Methods: </strong>We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK (<i>n</i> = 796; White) and the maternal and infant cohort study (MICS) in Taiwan (<i>n</i> = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.</p><p><strong>Results: </strong>Two total IgE trajectories, high vs. low, were inferred from each of the two cohorts. Associations of DNAm at 103 CpGs with IgE trajectories in IOWBC and at 476 CpGs in MICS were identified. Between the two cohorts, of the identified CpGs, one was in common, methQTL site cg16711274 (mapped to gene MINAR1), and 17 pathways were common with at least four linked to airway diseases.</p><p><strong>Conclusion: </strong>The findings suggest at-birth epigenetics may explain ethnicity differences in total IgE trajectories later in life.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-10"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA methylation at birth and IgE trajectories from birth to adolescence, different patterns between White and Asian.\",\"authors\":\"Hongmei Zhang, Jiasong Duan, Luhang Han, Naznin Alam, Meredith Ray, Fen Yang, Yu Jiang, Susan Ewart, John W Holloway, Wilfried Karmaus, Shu-Li Wang, S Hasan Arshad\",\"doi\":\"10.1080/17501911.2025.2453412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.</p><p><strong>Methods: </strong>We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK (<i>n</i> = 796; White) and the maternal and infant cohort study (MICS) in Taiwan (<i>n</i> = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.</p><p><strong>Results: </strong>Two total IgE trajectories, high vs. low, were inferred from each of the two cohorts. Associations of DNAm at 103 CpGs with IgE trajectories in IOWBC and at 476 CpGs in MICS were identified. Between the two cohorts, of the identified CpGs, one was in common, methQTL site cg16711274 (mapped to gene MINAR1), and 17 pathways were common with at least four linked to airway diseases.</p><p><strong>Conclusion: </strong>The findings suggest at-birth epigenetics may explain ethnicity differences in total IgE trajectories later in life.</p>\",\"PeriodicalId\":11959,\"journal\":{\"name\":\"Epigenomics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17501911.2025.2453412\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2453412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
DNA methylation at birth and IgE trajectories from birth to adolescence, different patterns between White and Asian.
Aim: We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.
Methods: We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK (n = 796; White) and the maternal and infant cohort study (MICS) in Taiwan (n = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.
Results: Two total IgE trajectories, high vs. low, were inferred from each of the two cohorts. Associations of DNAm at 103 CpGs with IgE trajectories in IOWBC and at 476 CpGs in MICS were identified. Between the two cohorts, of the identified CpGs, one was in common, methQTL site cg16711274 (mapped to gene MINAR1), and 17 pathways were common with at least four linked to airway diseases.
Conclusion: The findings suggest at-birth epigenetics may explain ethnicity differences in total IgE trajectories later in life.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.