{"title":"近半个世纪中国土壤硒的时空变化特征及其影响因素","authors":"Xiangjun Wang, Yuexuan Wang, Minghuan Xu, Xianglei Cheng, Changmao Long, Lijun Wei, Baojun Zhang","doi":"10.1007/s10653-025-02365-4","DOIUrl":null,"url":null,"abstract":"<p><p>Soil serves as a significant reservoir of selenium (Se) and plays a crucial role for the entry of Se into the food chain. Therefore, it is of utmost importance to gain a deep understanding of the spatial and temporal variation of total soil Se content in China, as well as its influencing factors. This understanding is essential for the rational and efficient utilization of Se resources, the maintenance of ecological balance, and the preservation of human health in the future. Through a comprehensive literature search, relevant studies were identified, and information regarding soil total Se content, soil available Se content, soil pH, and soil organic matter (SOM) was extracted. The Mann-Kendall (M-K) test was employed to analyze the variation of total soil Se content, while Moran's I was used to examine the global and local spatial clustering characteristics of soil Se. The results indicate that the total Se content in China has shown an increase at different spatial and temporal scales, particularly in Central China. Furthermore, there is a significant difference in total Se content between cultivated soil and natural soil in Central China (P < 0.05). Additionally, soil physicochemical properties have been found to impact soil total Se content. Specifically, pH is negatively correlated with soil total Se content, while SOM is positively correlated with it (P < 0.05). Overall, the findings suggest that the total Se content in Chinese soil is increasing over time, and human agricultural activities and physicochemical properties of the soil, such as soil pH and SOM, likely influence the bioavailability of Se or the overall soil total Se content through their interaction with Se speciation in the soil to some extent. It is important to note that changes in environmental conditions may also have some degree of impact on the total Se content.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"55"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial variations of soil Se in China over the past half century and its influencing factors.\",\"authors\":\"Xiangjun Wang, Yuexuan Wang, Minghuan Xu, Xianglei Cheng, Changmao Long, Lijun Wei, Baojun Zhang\",\"doi\":\"10.1007/s10653-025-02365-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil serves as a significant reservoir of selenium (Se) and plays a crucial role for the entry of Se into the food chain. Therefore, it is of utmost importance to gain a deep understanding of the spatial and temporal variation of total soil Se content in China, as well as its influencing factors. This understanding is essential for the rational and efficient utilization of Se resources, the maintenance of ecological balance, and the preservation of human health in the future. Through a comprehensive literature search, relevant studies were identified, and information regarding soil total Se content, soil available Se content, soil pH, and soil organic matter (SOM) was extracted. The Mann-Kendall (M-K) test was employed to analyze the variation of total soil Se content, while Moran's I was used to examine the global and local spatial clustering characteristics of soil Se. The results indicate that the total Se content in China has shown an increase at different spatial and temporal scales, particularly in Central China. Furthermore, there is a significant difference in total Se content between cultivated soil and natural soil in Central China (P < 0.05). Additionally, soil physicochemical properties have been found to impact soil total Se content. Specifically, pH is negatively correlated with soil total Se content, while SOM is positively correlated with it (P < 0.05). Overall, the findings suggest that the total Se content in Chinese soil is increasing over time, and human agricultural activities and physicochemical properties of the soil, such as soil pH and SOM, likely influence the bioavailability of Se or the overall soil total Se content through their interaction with Se speciation in the soil to some extent. It is important to note that changes in environmental conditions may also have some degree of impact on the total Se content.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 2\",\"pages\":\"55\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02365-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02365-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Temporal and spatial variations of soil Se in China over the past half century and its influencing factors.
Soil serves as a significant reservoir of selenium (Se) and plays a crucial role for the entry of Se into the food chain. Therefore, it is of utmost importance to gain a deep understanding of the spatial and temporal variation of total soil Se content in China, as well as its influencing factors. This understanding is essential for the rational and efficient utilization of Se resources, the maintenance of ecological balance, and the preservation of human health in the future. Through a comprehensive literature search, relevant studies were identified, and information regarding soil total Se content, soil available Se content, soil pH, and soil organic matter (SOM) was extracted. The Mann-Kendall (M-K) test was employed to analyze the variation of total soil Se content, while Moran's I was used to examine the global and local spatial clustering characteristics of soil Se. The results indicate that the total Se content in China has shown an increase at different spatial and temporal scales, particularly in Central China. Furthermore, there is a significant difference in total Se content between cultivated soil and natural soil in Central China (P < 0.05). Additionally, soil physicochemical properties have been found to impact soil total Se content. Specifically, pH is negatively correlated with soil total Se content, while SOM is positively correlated with it (P < 0.05). Overall, the findings suggest that the total Se content in Chinese soil is increasing over time, and human agricultural activities and physicochemical properties of the soil, such as soil pH and SOM, likely influence the bioavailability of Se or the overall soil total Se content through their interaction with Se speciation in the soil to some extent. It is important to note that changes in environmental conditions may also have some degree of impact on the total Se content.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.