Wenbing Zhao , Xiyan Zhu , Xiang Chu , Hao Wang , Diyou Chen , Yibo Zhao , Yishan Yao , Zhikang Liao , Hongyi Xiang , Wei Dai , Jingru Xie , Xing Chen , Sen Li , Pengfei Wu , Hui Zhao
{"title":"动态蛋白质组学和磷酸化蛋白质组学分析揭示了高原创伤性脑损伤早期的关键通路和靶点。","authors":"Wenbing Zhao , Xiyan Zhu , Xiang Chu , Hao Wang , Diyou Chen , Yibo Zhao , Yishan Yao , Zhikang Liao , Hongyi Xiang , Wei Dai , Jingru Xie , Xing Chen , Sen Li , Pengfei Wu , Hui Zhao","doi":"10.1016/j.expneurol.2025.115147","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury (TBI), particularly at high altitudes (HA-TBI), is a leading cause of mortality and disability, yet clear diagnostic and treatment protocols are lacking. This study explores the early pathophysiological changes occurring within 24 h following HA-TBI, with a focus on differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Using a low-pressure hypoxic chamber to simulate high-altitude conditions combined with a controllable cortical impact (CCI) model, we established a rat model of HA-TBI. Neurological function was evaluated using the modified Neurologic Severity Score (mNSS), while neuropathological and inflammatory responses following HA-TBI were evaluated through hematoxylin and eosin (HE) staining, immunofluorescence, Western blot (WB), and Enzyme-Linked Immunosorbent Assay (ELISA). In-depth proteomic and phosphoproteomic analyses were performed on the cerebral cortex at 6, 12, and 24 h post-injury. Bioinformatic analysis identified time-dependent DEPs, revealing dynamic changes in mRNA metabolism, ATP metabolism, and MAPK signaling during the early stages of HA-TBI. Common DEPs at 6, 12, and 24 h post-injury were linked to complement and coagulation cascades. Time-dependent DEPPs influenced synaptic structure and neurotransmission, with early changes in glutamatergic synapses being especially pronounced. Key pathways, including the complement and coagulation cascades and dopaminergic synapses, emerged as central to the injury response. Furthermore, proteins such as AHSG, APOA1, GRIN2B, phospho-GSK3β-S9, and CAMK2G were identified as critical regulators in these pathways. WB validated these findings, offering new insights into the mechanisms underlying HA-TBI and highlighting potential therapeutic targets for early intervention in high-altitude trauma.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"386 ","pages":"Article 115147"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic proteomic and phosphoproteomic analysis reveals key pathways and targets in the early stages of high-altitude traumatic brain injury\",\"authors\":\"Wenbing Zhao , Xiyan Zhu , Xiang Chu , Hao Wang , Diyou Chen , Yibo Zhao , Yishan Yao , Zhikang Liao , Hongyi Xiang , Wei Dai , Jingru Xie , Xing Chen , Sen Li , Pengfei Wu , Hui Zhao\",\"doi\":\"10.1016/j.expneurol.2025.115147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traumatic brain injury (TBI), particularly at high altitudes (HA-TBI), is a leading cause of mortality and disability, yet clear diagnostic and treatment protocols are lacking. This study explores the early pathophysiological changes occurring within 24 h following HA-TBI, with a focus on differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Using a low-pressure hypoxic chamber to simulate high-altitude conditions combined with a controllable cortical impact (CCI) model, we established a rat model of HA-TBI. Neurological function was evaluated using the modified Neurologic Severity Score (mNSS), while neuropathological and inflammatory responses following HA-TBI were evaluated through hematoxylin and eosin (HE) staining, immunofluorescence, Western blot (WB), and Enzyme-Linked Immunosorbent Assay (ELISA). In-depth proteomic and phosphoproteomic analyses were performed on the cerebral cortex at 6, 12, and 24 h post-injury. Bioinformatic analysis identified time-dependent DEPs, revealing dynamic changes in mRNA metabolism, ATP metabolism, and MAPK signaling during the early stages of HA-TBI. Common DEPs at 6, 12, and 24 h post-injury were linked to complement and coagulation cascades. Time-dependent DEPPs influenced synaptic structure and neurotransmission, with early changes in glutamatergic synapses being especially pronounced. Key pathways, including the complement and coagulation cascades and dopaminergic synapses, emerged as central to the injury response. Furthermore, proteins such as AHSG, APOA1, GRIN2B, phospho-GSK3β-S9, and CAMK2G were identified as critical regulators in these pathways. WB validated these findings, offering new insights into the mechanisms underlying HA-TBI and highlighting potential therapeutic targets for early intervention in high-altitude trauma.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"386 \",\"pages\":\"Article 115147\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625000111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Dynamic proteomic and phosphoproteomic analysis reveals key pathways and targets in the early stages of high-altitude traumatic brain injury
Traumatic brain injury (TBI), particularly at high altitudes (HA-TBI), is a leading cause of mortality and disability, yet clear diagnostic and treatment protocols are lacking. This study explores the early pathophysiological changes occurring within 24 h following HA-TBI, with a focus on differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Using a low-pressure hypoxic chamber to simulate high-altitude conditions combined with a controllable cortical impact (CCI) model, we established a rat model of HA-TBI. Neurological function was evaluated using the modified Neurologic Severity Score (mNSS), while neuropathological and inflammatory responses following HA-TBI were evaluated through hematoxylin and eosin (HE) staining, immunofluorescence, Western blot (WB), and Enzyme-Linked Immunosorbent Assay (ELISA). In-depth proteomic and phosphoproteomic analyses were performed on the cerebral cortex at 6, 12, and 24 h post-injury. Bioinformatic analysis identified time-dependent DEPs, revealing dynamic changes in mRNA metabolism, ATP metabolism, and MAPK signaling during the early stages of HA-TBI. Common DEPs at 6, 12, and 24 h post-injury were linked to complement and coagulation cascades. Time-dependent DEPPs influenced synaptic structure and neurotransmission, with early changes in glutamatergic synapses being especially pronounced. Key pathways, including the complement and coagulation cascades and dopaminergic synapses, emerged as central to the injury response. Furthermore, proteins such as AHSG, APOA1, GRIN2B, phospho-GSK3β-S9, and CAMK2G were identified as critical regulators in these pathways. WB validated these findings, offering new insights into the mechanisms underlying HA-TBI and highlighting potential therapeutic targets for early intervention in high-altitude trauma.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.