{"title":"基于l<s:1>杂波噪声驱动的非线性俯仰刚度二维翼型系统逆随机共振。","authors":"Jinjie Zhu, Xianbin Liu","doi":"10.1063/5.0244641","DOIUrl":null,"url":null,"abstract":"<p><p>The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models. In this paper, we investigated a classical two-dimensional airfoil model with the nonlinear pitching stiffness subjected to the Lévy noise. For the deterministic case, the nonlinear stiffness coefficients reshape the bistable region, which influences the size of the large limit cycle oscillations before the flutter speed. The introduction of the additive Lévy noise can induce significant inverse stochastic resonance phenomena when the basin of attraction of the stable limit cycle is much smaller than that of the stable fixed point. The distribution parameters of the Lévy noise exhibit distinct impacts on the inverse stochastic resonance curves. Our results may shed some light on the design and control process of the airfoil models.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.\",\"authors\":\"Jinjie Zhu, Xianbin Liu\",\"doi\":\"10.1063/5.0244641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models. In this paper, we investigated a classical two-dimensional airfoil model with the nonlinear pitching stiffness subjected to the Lévy noise. For the deterministic case, the nonlinear stiffness coefficients reshape the bistable region, which influences the size of the large limit cycle oscillations before the flutter speed. The introduction of the additive Lévy noise can induce significant inverse stochastic resonance phenomena when the basin of attraction of the stable limit cycle is much smaller than that of the stable fixed point. The distribution parameters of the Lévy noise exhibit distinct impacts on the inverse stochastic resonance curves. Our results may shed some light on the design and control process of the airfoil models.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0244641\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0244641","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.
The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models. In this paper, we investigated a classical two-dimensional airfoil model with the nonlinear pitching stiffness subjected to the Lévy noise. For the deterministic case, the nonlinear stiffness coefficients reshape the bistable region, which influences the size of the large limit cycle oscillations before the flutter speed. The introduction of the additive Lévy noise can induce significant inverse stochastic resonance phenomena when the basin of attraction of the stable limit cycle is much smaller than that of the stable fixed point. The distribution parameters of the Lévy noise exhibit distinct impacts on the inverse stochastic resonance curves. Our results may shed some light on the design and control process of the airfoil models.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.