考虑不同自旋交换动力学和饱和方案的超极化129Xe CEST核磁共振射频加热效应。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
David Hernandez-Solarte, Leif Schröder
{"title":"考虑不同自旋交换动力学和饱和方案的超极化129Xe CEST核磁共振射频加热效应。","authors":"David Hernandez-Solarte, Leif Schröder","doi":"10.1002/cphc.202401037","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too. We present a systematic study to compare conventional block pulse with shaped-pulse saturation and quantify how the effective average saturation power impacts these parameters. Pulse shape and nominal excitation bandwidth, however, turned out to have little impact on acquired z-spectra and temperature changes. This study illustrates how different exchange kinetics define different regimes of suitable RF power within the dynamic range of fully saturable magnetization from hyperpolarized 129Xe. Temperature-related changes in the resonance frequency of bound spins were also quantified for the two Xe hosts CB6 and CrA-ma and put into context for typically used CEST acquisition parameters, including the stability of the magnetic field.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401037"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.\",\"authors\":\"David Hernandez-Solarte, Leif Schröder\",\"doi\":\"10.1002/cphc.202401037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too. We present a systematic study to compare conventional block pulse with shaped-pulse saturation and quantify how the effective average saturation power impacts these parameters. Pulse shape and nominal excitation bandwidth, however, turned out to have little impact on acquired z-spectra and temperature changes. This study illustrates how different exchange kinetics define different regimes of suitable RF power within the dynamic range of fully saturable magnetization from hyperpolarized 129Xe. Temperature-related changes in the resonance frequency of bound spins were also quantified for the two Xe hosts CB6 and CrA-ma and put into context for typically used CEST acquisition parameters, including the stability of the magnetic field.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202401037\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202401037\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401037","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学交换饱和转移(CEST)提高了核磁共振的灵敏度,但取决于自旋交换动力学,它可能需要大量的射频能量沉积来标记磁化。可能会出现rf诱导加热等潜在副作用,必须加以监测。在这里,我们探索了参数空间,不仅考虑了不必要的加热,而且还考虑了有效的CEST积累(去极化率)、光谱分辨率(线宽)以及随后的影响,如CEST响应的化学位移的变化。我们提出了一个系统的研究,比较常规块脉冲和形状脉冲饱和和量化有效平均饱和功率如何影响这些参数。然而,脉冲形状和标称激发带宽对获得的z-光谱和温度变化的影响很小。该研究说明了不同的交换动力学如何在超极化129Xe的完全饱和磁化动态范围内定义不同的合适射频功率制度。我们还量化了两种Xe宿主CB6和CrA-ma的束缚自旋共振频率的温度相关变化,并将其与CEST采集参数(包括磁场稳定性)联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too. We present a systematic study to compare conventional block pulse with shaped-pulse saturation and quantify how the effective average saturation power impacts these parameters. Pulse shape and nominal excitation bandwidth, however, turned out to have little impact on acquired z-spectra and temperature changes. This study illustrates how different exchange kinetics define different regimes of suitable RF power within the dynamic range of fully saturable magnetization from hyperpolarized 129Xe. Temperature-related changes in the resonance frequency of bound spins were also quantified for the two Xe hosts CB6 and CrA-ma and put into context for typically used CEST acquisition parameters, including the stability of the magnetic field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信