PRDM1是自然杀伤t细胞中枢记忆程序和效应功能的关键调控因子。

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Gengwen Tian, Gabriel A Barragán, Hangjin Yu, Claudia Martinez-Amador, Akshaya Adaikkalavan, Xavier Rios, Linjie Guo, Janice M Drabek, Osmay Pardias, Xin Xu, Antonino Montalbano, Chunchao Zhang, Yanchuan Li, Amy N Courtney, Erica J Di Pierro, Leonid S Metelitsa
{"title":"PRDM1是自然杀伤t细胞中枢记忆程序和效应功能的关键调控因子。","authors":"Gengwen Tian, Gabriel A Barragán, Hangjin Yu, Claudia Martinez-Amador, Akshaya Adaikkalavan, Xavier Rios, Linjie Guo, Janice M Drabek, Osmay Pardias, Xin Xu, Antonino Montalbano, Chunchao Zhang, Yanchuan Li, Amy N Courtney, Erica J Di Pierro, Leonid S Metelitsa","doi":"10.1158/2326-6066.CIR-24-0259","DOIUrl":null,"url":null,"abstract":"<p><p>Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.CAR) were transduced with the gRNA library and exposed to CD1d+ leukemia or CD1d-GD2+ neuroblastoma cells, respectively, over six challenge cycles in vitro. Quantification of gRNA abundance revealed enrichment of PRDM1-specific gRNAs in both NKTs and GD2.CAR NKTs, a result that was validated through targeted PRDM1 knockout. Transcriptional, phenotypic, and functional analyses demonstrated that CAR NKTs with PRDM1 knockout underwent central memory-like differentiation and resisted exhaustion. However, these cells downregulated the cytotoxic mediator granzyme B and showed reduced in vitro cytotoxicity and only moderate in vivo antitumor activity in a xenogeneic neuroblastoma model. In contrast, shRNA-mediated PRDM1 knockdown preserved effector function while promoting central memory differentiation, resulting in GD2.CAR NKTs with potent in vivo antitumor activity. Thus, we have identified PRDM1 as a regulator of NKT memory differentiation and effector function that can be exploited to improve the efficacy of NKT-based cancer immunotherapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function.\",\"authors\":\"Gengwen Tian, Gabriel A Barragán, Hangjin Yu, Claudia Martinez-Amador, Akshaya Adaikkalavan, Xavier Rios, Linjie Guo, Janice M Drabek, Osmay Pardias, Xin Xu, Antonino Montalbano, Chunchao Zhang, Yanchuan Li, Amy N Courtney, Erica J Di Pierro, Leonid S Metelitsa\",\"doi\":\"10.1158/2326-6066.CIR-24-0259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.CAR) were transduced with the gRNA library and exposed to CD1d+ leukemia or CD1d-GD2+ neuroblastoma cells, respectively, over six challenge cycles in vitro. Quantification of gRNA abundance revealed enrichment of PRDM1-specific gRNAs in both NKTs and GD2.CAR NKTs, a result that was validated through targeted PRDM1 knockout. Transcriptional, phenotypic, and functional analyses demonstrated that CAR NKTs with PRDM1 knockout underwent central memory-like differentiation and resisted exhaustion. However, these cells downregulated the cytotoxic mediator granzyme B and showed reduced in vitro cytotoxicity and only moderate in vivo antitumor activity in a xenogeneic neuroblastoma model. In contrast, shRNA-mediated PRDM1 knockdown preserved effector function while promoting central memory differentiation, resulting in GD2.CAR NKTs with potent in vivo antitumor activity. Thus, we have identified PRDM1 as a regulator of NKT memory differentiation and effector function that can be exploited to improve the efficacy of NKT-based cancer immunotherapies.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0259\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0259","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自然杀伤T细胞(NKTs)是一种很有前途的癌症免疫治疗平台,但很少有基因参与调控NKT治疗活性。为了找到NKT功能适应度的调节因子,我们开发了一种基于CRISPR/ cas9的诱变筛选,该筛选使用了针对1,118个免疫相关基因的引导RNA (gRNA)文库。未修饰的NKTs和表达gd2特异性嵌合抗原受体(GD2.CAR)的NKTs用gRNA文库转导,分别暴露于CD1d+白血病或CD1d- gd2 +神经母细胞瘤细胞,在体外进行6个刺激周期。gRNA丰度的量化显示,在nkt和GD2中都富集了prdm1特异性gRNA。CAR - nkt,这一结果是通过靶向PRDM1敲除验证的。转录、表型和功能分析表明,PRDM1基因敲除的CAR - nkt经历了中枢记忆样分化,并抵抗衰竭。然而,在异种神经母细胞瘤模型中,这些细胞下调细胞毒性介质颗粒酶B,并表现出较低的体外细胞毒性和适度的体内抗肿瘤活性。相比之下,shrna介导的PRDM1敲低在促进中枢记忆分化的同时保留了效应器功能,导致GD2。具有有效体内抗肿瘤活性的CAR - NKTs。因此,我们已经确定了PRDM1作为NKT记忆分化的调节剂和效应功能,可以用来提高基于NKT的癌症免疫治疗的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function.

Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.CAR) were transduced with the gRNA library and exposed to CD1d+ leukemia or CD1d-GD2+ neuroblastoma cells, respectively, over six challenge cycles in vitro. Quantification of gRNA abundance revealed enrichment of PRDM1-specific gRNAs in both NKTs and GD2.CAR NKTs, a result that was validated through targeted PRDM1 knockout. Transcriptional, phenotypic, and functional analyses demonstrated that CAR NKTs with PRDM1 knockout underwent central memory-like differentiation and resisted exhaustion. However, these cells downregulated the cytotoxic mediator granzyme B and showed reduced in vitro cytotoxicity and only moderate in vivo antitumor activity in a xenogeneic neuroblastoma model. In contrast, shRNA-mediated PRDM1 knockdown preserved effector function while promoting central memory differentiation, resulting in GD2.CAR NKTs with potent in vivo antitumor activity. Thus, we have identified PRDM1 as a regulator of NKT memory differentiation and effector function that can be exploited to improve the efficacy of NKT-based cancer immunotherapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信