{"title":"CRAT下调通过降低PGC-1α的乙酰化来促进线粒体代谢,从而促进卵巢癌的进展。","authors":"Zhen Zhang, Shuhua Zhao, Xiaohui Lv, Yan Gao, Qian Guo, Yanjie Ren, Yuanyuan He, Yihua Jin, Hong Yang, Shujuan Liu, Xiaohong Zhang","doi":"10.1038/s41420-025-02294-2","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunctions are closely associated with different types of disease, including cancer. Carnitine acetyltransferase (CRAT) is a mitochondrial-localized enzyme catalyzing the reversible transfer of acyl groups from an acyl-CoA thioester to carnitine and regulates the ratio of acyl-CoA/CoA. Our bioinformatics analysis using public database revealed a significant decrease of CRAT expression in ovarian cancer (OC). However, the functions of CRAT have rarely been investigated in human cancers, especially in OC. Here, we found a frequent down-regulation of CRAT in OC, which is mainly caused by up-regulation of miR-132-5p. Downregulation of CRAT was significantly associated with shorter survival time for patients with OC. Forced expression of CRAT suppressed OC growth and metastasis by inducing cell cycle arrest and epithelial to mesenchymal transition (EMT). By contrast, CRAT knockdown promoted OC growth and metastasis. Mechanistically, we found that CRAT downregulation promoted OC growth and metastasis by increasing mitochondrial biogenesis to facilitate mitochondrial metabolism through reducing the acetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α). In summary, CRAT functions as a critical tumor suppressor in OC progression by enhancing PGC-1α-mediated mitochondrial biogenesis and metabolism, suggesting CRAT as a potential therapeutic target in treatment of OC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"15"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743791/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRAT downregulation promotes ovarian cancer progression by facilitating mitochondrial metabolism through decreasing the acetylation of PGC-1α.\",\"authors\":\"Zhen Zhang, Shuhua Zhao, Xiaohui Lv, Yan Gao, Qian Guo, Yanjie Ren, Yuanyuan He, Yihua Jin, Hong Yang, Shujuan Liu, Xiaohong Zhang\",\"doi\":\"10.1038/s41420-025-02294-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunctions are closely associated with different types of disease, including cancer. Carnitine acetyltransferase (CRAT) is a mitochondrial-localized enzyme catalyzing the reversible transfer of acyl groups from an acyl-CoA thioester to carnitine and regulates the ratio of acyl-CoA/CoA. Our bioinformatics analysis using public database revealed a significant decrease of CRAT expression in ovarian cancer (OC). However, the functions of CRAT have rarely been investigated in human cancers, especially in OC. Here, we found a frequent down-regulation of CRAT in OC, which is mainly caused by up-regulation of miR-132-5p. Downregulation of CRAT was significantly associated with shorter survival time for patients with OC. Forced expression of CRAT suppressed OC growth and metastasis by inducing cell cycle arrest and epithelial to mesenchymal transition (EMT). By contrast, CRAT knockdown promoted OC growth and metastasis. Mechanistically, we found that CRAT downregulation promoted OC growth and metastasis by increasing mitochondrial biogenesis to facilitate mitochondrial metabolism through reducing the acetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α). In summary, CRAT functions as a critical tumor suppressor in OC progression by enhancing PGC-1α-mediated mitochondrial biogenesis and metabolism, suggesting CRAT as a potential therapeutic target in treatment of OC.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"15\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02294-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02294-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CRAT downregulation promotes ovarian cancer progression by facilitating mitochondrial metabolism through decreasing the acetylation of PGC-1α.
Mitochondrial dysfunctions are closely associated with different types of disease, including cancer. Carnitine acetyltransferase (CRAT) is a mitochondrial-localized enzyme catalyzing the reversible transfer of acyl groups from an acyl-CoA thioester to carnitine and regulates the ratio of acyl-CoA/CoA. Our bioinformatics analysis using public database revealed a significant decrease of CRAT expression in ovarian cancer (OC). However, the functions of CRAT have rarely been investigated in human cancers, especially in OC. Here, we found a frequent down-regulation of CRAT in OC, which is mainly caused by up-regulation of miR-132-5p. Downregulation of CRAT was significantly associated with shorter survival time for patients with OC. Forced expression of CRAT suppressed OC growth and metastasis by inducing cell cycle arrest and epithelial to mesenchymal transition (EMT). By contrast, CRAT knockdown promoted OC growth and metastasis. Mechanistically, we found that CRAT downregulation promoted OC growth and metastasis by increasing mitochondrial biogenesis to facilitate mitochondrial metabolism through reducing the acetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α). In summary, CRAT functions as a critical tumor suppressor in OC progression by enhancing PGC-1α-mediated mitochondrial biogenesis and metabolism, suggesting CRAT as a potential therapeutic target in treatment of OC.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.