基于微生物组的分类和预测的知识学习和转移技术:回顾和评估。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jin Han, Haohong Zhang, Kang Ning
{"title":"基于微生物组的分类和预测的知识学习和转移技术:回顾和评估。","authors":"Jin Han, Haohong Zhang, Kang Ning","doi":"10.1093/bib/bbaf015","DOIUrl":null,"url":null,"abstract":"<p><p>The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on \"good models\" to embracing \"adaptive models\" resonates with the philosophy of \"teaching a man to fish\" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737891/pdf/","citationCount":"0","resultStr":"{\"title\":\"Techniques for learning and transferring knowledge for microbiome-based classification and prediction: review and assessment.\",\"authors\":\"Jin Han, Haohong Zhang, Kang Ning\",\"doi\":\"10.1093/bib/bbaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on \\\"good models\\\" to embracing \\\"adaptive models\\\" resonates with the philosophy of \\\"teaching a man to fish\\\" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微生物组数据量正以指数级速度增长,目前的大数据挖掘方法遇到了很大的障碍。从这些庞大的微生物组数据集中有效地管理和提取有价值的见解已经成为当代微生物组研究领域的一个重大挑战。这篇综合综述深入研究了基于微生物组的分类和预测任务背景下基础模型和迁移学习技术的使用,倡导从传统的特定任务或特定场景模型向更具适应性的持续学习模型过渡。本文强调了最初构建一个健壮的基础模型的实用性和好处,然后可以使用迁移学习对其进行微调,以处理特定的上下文任务。在现实场景中,迁移学习的应用使模型能够利用来自一个地理区域的疾病相关数据,并提高不同区域的诊断精度。这种从依赖“好模式”到接受“适应性模式”的转变与“授人以渔”的理念相呼应,从而为个性化医疗和准确诊断的进步铺平了道路。实证研究表明,基础模型与迁移学习方法的整合大大提高了模型在处理大规模和多样化微生物组数据集时的性能,有效缓解了数据异质性带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Techniques for learning and transferring knowledge for microbiome-based classification and prediction: review and assessment.

The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on "good models" to embracing "adaptive models" resonates with the philosophy of "teaching a man to fish" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信