{"title":"基于微生物组的分类和预测的知识学习和转移技术:回顾和评估。","authors":"Jin Han, Haohong Zhang, Kang Ning","doi":"10.1093/bib/bbaf015","DOIUrl":null,"url":null,"abstract":"<p><p>The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on \"good models\" to embracing \"adaptive models\" resonates with the philosophy of \"teaching a man to fish\" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737891/pdf/","citationCount":"0","resultStr":"{\"title\":\"Techniques for learning and transferring knowledge for microbiome-based classification and prediction: review and assessment.\",\"authors\":\"Jin Han, Haohong Zhang, Kang Ning\",\"doi\":\"10.1093/bib/bbaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on \\\"good models\\\" to embracing \\\"adaptive models\\\" resonates with the philosophy of \\\"teaching a man to fish\\\" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Techniques for learning and transferring knowledge for microbiome-based classification and prediction: review and assessment.
The volume of microbiome data is growing at an exponential rate, and the current methodologies for big data mining are encountering substantial obstacles. Effectively managing and extracting valuable insights from these vast microbiome datasets has emerged as a significant challenge in the field of contemporary microbiome research. This comprehensive review delves into the utilization of foundation models and transfer learning techniques within the context of microbiome-based classification and prediction tasks, advocating for a transition away from traditional task-specific or scenario-specific models towards more adaptable, continuous learning models. The article underscores the practicality and benefits of initially constructing a robust foundation model, which can then be fine-tuned using transfer learning to tackle specific context tasks. In real-world scenarios, the application of transfer learning empowers models to leverage disease-related data from one geographical area and enhance diagnostic precision in different regions. This transition from relying on "good models" to embracing "adaptive models" resonates with the philosophy of "teaching a man to fish" thereby paving the way for advancements in personalized medicine and accurate diagnosis. Empirical research suggests that the integration of foundation models with transfer learning methodologies substantially boosts the performance of models when dealing with large-scale and diverse microbiome datasets, effectively mitigating the challenges posed by data heterogeneity.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.