PHPGAT:基于多模态异构知识图和图注意网络的噬菌体宿主预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fu Liu, Zhimiao Zhao, Yun Liu
{"title":"PHPGAT:基于多模态异构知识图和图注意网络的噬菌体宿主预测。","authors":"Fu Liu, Zhimiao Zhao, Yun Liu","doi":"10.1093/bib/bbaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance poses a significant threat to global health, making the development of alternative strategies to combat bacterial pathogens increasingly urgent. One such promising approach is the strategic use of bacteriophages (or phages) to specifically target and eradicate antibiotic-resistant bacteria. Phages, being among the most prevalent life forms on Earth, play a critical role in maintaining ecological balance by regulating bacterial communities and driving genetic diversity. Accurate prediction of phage hosts is essential for successfully applying phage therapy. However, existing prediction models may not fully encapsulate the complex dynamics of phage-host interactions in diverse microbial environments, indicating a need for improved accuracy through more sophisticated modeling techniques. In response to this challenge, this study introduces a novel phage-host prediction model, PHPGAT, which leverages a multimodal heterogeneous knowledge graph with the advanced GATv2 (Graph Attention Network v2) framework. The model first constructs a multimodal heterogeneous knowledge graph by integrating phage-phage, host-host, and phage-host interactions to capture the intricate connections between biological entities. GATv2 is then employed to extract deep node features and learn dynamic interdependencies, generating context-aware embeddings. Finally, an inner product decoder is designed to compute the likelihood of interaction between a phage and host pair based on the embedding vectors produced by GATv2. Evaluation results using two datasets demonstrate that PHPGAT achieves precise phage host predictions and outperforms other models. PHPGAT is available at https://github.com/ZhaoZMer/PHPGAT.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745545/pdf/","citationCount":"0","resultStr":"{\"title\":\"PHPGAT: predicting phage hosts based on multimodal heterogeneous knowledge graph with graph attention network.\",\"authors\":\"Fu Liu, Zhimiao Zhao, Yun Liu\",\"doi\":\"10.1093/bib/bbaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance poses a significant threat to global health, making the development of alternative strategies to combat bacterial pathogens increasingly urgent. One such promising approach is the strategic use of bacteriophages (or phages) to specifically target and eradicate antibiotic-resistant bacteria. Phages, being among the most prevalent life forms on Earth, play a critical role in maintaining ecological balance by regulating bacterial communities and driving genetic diversity. Accurate prediction of phage hosts is essential for successfully applying phage therapy. However, existing prediction models may not fully encapsulate the complex dynamics of phage-host interactions in diverse microbial environments, indicating a need for improved accuracy through more sophisticated modeling techniques. In response to this challenge, this study introduces a novel phage-host prediction model, PHPGAT, which leverages a multimodal heterogeneous knowledge graph with the advanced GATv2 (Graph Attention Network v2) framework. The model first constructs a multimodal heterogeneous knowledge graph by integrating phage-phage, host-host, and phage-host interactions to capture the intricate connections between biological entities. GATv2 is then employed to extract deep node features and learn dynamic interdependencies, generating context-aware embeddings. Finally, an inner product decoder is designed to compute the likelihood of interaction between a phage and host pair based on the embedding vectors produced by GATv2. Evaluation results using two datasets demonstrate that PHPGAT achieves precise phage host predictions and outperforms other models. PHPGAT is available at https://github.com/ZhaoZMer/PHPGAT.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性对全球健康构成重大威胁,使得制定对抗细菌性病原体的替代战略日益紧迫。其中一种有希望的方法是战略性地使用噬菌体(或噬菌体)来特异性地靶向和根除抗生素抗性细菌。噬菌体是地球上最常见的生命形式之一,通过调节细菌群落和推动遗传多样性,在维持生态平衡方面发挥着关键作用。准确预测噬菌体宿主对噬菌体治疗的成功应用至关重要。然而,现有的预测模型可能不能完全概括不同微生物环境中噬菌体-宿主相互作用的复杂动态,这表明需要通过更复杂的建模技术来提高准确性。为了应对这一挑战,本研究引入了一种新的噬菌体-宿主预测模型PHPGAT,该模型利用多模态异构知识图和先进的GATv2 (graph Attention Network v2)框架。该模型首先通过整合噬菌体、宿主-宿主和噬菌体-宿主相互作用构建了一个多模态异构知识图谱,以捕捉生物实体之间的复杂联系。然后使用GATv2提取深度节点特征并学习动态相互依赖关系,生成上下文感知嵌入。最后,设计了一个内积解码器,根据GATv2产生的嵌入载体计算噬菌体和宿主对之间相互作用的可能性。使用两个数据集的评估结果表明,PHPGAT实现了精确的噬菌体宿主预测,并且优于其他模型。PHPGAT可从https://github.com/ZhaoZMer/PHPGAT获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHPGAT: predicting phage hosts based on multimodal heterogeneous knowledge graph with graph attention network.

Antibiotic resistance poses a significant threat to global health, making the development of alternative strategies to combat bacterial pathogens increasingly urgent. One such promising approach is the strategic use of bacteriophages (or phages) to specifically target and eradicate antibiotic-resistant bacteria. Phages, being among the most prevalent life forms on Earth, play a critical role in maintaining ecological balance by regulating bacterial communities and driving genetic diversity. Accurate prediction of phage hosts is essential for successfully applying phage therapy. However, existing prediction models may not fully encapsulate the complex dynamics of phage-host interactions in diverse microbial environments, indicating a need for improved accuracy through more sophisticated modeling techniques. In response to this challenge, this study introduces a novel phage-host prediction model, PHPGAT, which leverages a multimodal heterogeneous knowledge graph with the advanced GATv2 (Graph Attention Network v2) framework. The model first constructs a multimodal heterogeneous knowledge graph by integrating phage-phage, host-host, and phage-host interactions to capture the intricate connections between biological entities. GATv2 is then employed to extract deep node features and learn dynamic interdependencies, generating context-aware embeddings. Finally, an inner product decoder is designed to compute the likelihood of interaction between a phage and host pair based on the embedding vectors produced by GATv2. Evaluation results using two datasets demonstrate that PHPGAT achieves precise phage host predictions and outperforms other models. PHPGAT is available at https://github.com/ZhaoZMer/PHPGAT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信