使用聚类深度试验确定多发性硬化症患者足背屈的事件相关非同步发作潜伏期

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
L Carolina Carrere, Julián Furios, José A Biurrun Manresa, Carlos H Ballario, Carolina B Tabernig
{"title":"使用聚类深度试验确定多发性硬化症患者足背屈的事件相关非同步发作潜伏期","authors":"L Carolina Carrere, Julián Furios, José A Biurrun Manresa, Carlos H Ballario, Carolina B Tabernig","doi":"10.1088/2057-1976/adaaf8","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a disorder in which the body's immune system attacks structures of the central nervous system, resulting in lesions that can occur throughout the brain and spinal cord. Cortical lesions, in particular, can contribute to motor dysfunction. Walking disability is reported as the main impairment by people with MS (pwMS), often due to limited ankle movement. This study explored the event-related desynchronization (ERD) onset latency of the sensorimotor rhythms during foot dorsiflexion in pwMS computed using an objective and independent of human criterion method, as an electroencephalogram (EEG) based biomarker. EEG signals were recorded in eight persons with neither neurological condition nor motor dysfunction and eight pwMS with relapsing-remitting, primary progressive or secondary progressive MS. Recordings were divided into three groups: control, more affected lower limb and less affected lower limb. The ERD-onset latency was determined using a method based on the percent of ERD time course and the cluster depth tests. The median and interquartile range of the ERD-onset latency were 1186.0 (1100.0, 1250.0) ms; 1064.0 (1031.0, 1127.0) ms for the more and less affected groups respectively, whereas the median and interquartile range for the control group was 656.0 (472.2, 950.0) ms. There was a significant delay in the ERD-onset latencies of the pwMS groups compared to the control group (p<0.001 for both comparisons). These findings suggest that the ERD-onset latency computed using the proposed method could be used as an EEG biomarker to evaluate disease progression or therapeutic interventions in pwMS.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests.\",\"authors\":\"L Carolina Carrere, Julián Furios, José A Biurrun Manresa, Carlos H Ballario, Carolina B Tabernig\",\"doi\":\"10.1088/2057-1976/adaaf8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is a disorder in which the body's immune system attacks structures of the central nervous system, resulting in lesions that can occur throughout the brain and spinal cord. Cortical lesions, in particular, can contribute to motor dysfunction. Walking disability is reported as the main impairment by people with MS (pwMS), often due to limited ankle movement. This study explored the event-related desynchronization (ERD) onset latency of the sensorimotor rhythms during foot dorsiflexion in pwMS computed using an objective and independent of human criterion method, as an electroencephalogram (EEG) based biomarker. EEG signals were recorded in eight persons with neither neurological condition nor motor dysfunction and eight pwMS with relapsing-remitting, primary progressive or secondary progressive MS. Recordings were divided into three groups: control, more affected lower limb and less affected lower limb. The ERD-onset latency was determined using a method based on the percent of ERD time course and the cluster depth tests. The median and interquartile range of the ERD-onset latency were 1186.0 (1100.0, 1250.0) ms; 1064.0 (1031.0, 1127.0) ms for the more and less affected groups respectively, whereas the median and interquartile range for the control group was 656.0 (472.2, 950.0) ms. There was a significant delay in the ERD-onset latencies of the pwMS groups compared to the control group (p<0.001 for both comparisons). These findings suggest that the ERD-onset latency computed using the proposed method could be used as an EEG biomarker to evaluate disease progression or therapeutic interventions in pwMS.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/adaaf8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adaaf8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种身体免疫系统攻击中枢神经系统结构的疾病,导致整个大脑和脊髓出现病变。尤其是皮质损伤,可导致运动功能障碍。据报道,行走障碍是多发性硬化症(pwMS)患者的主要损害,通常是由于踝关节活动受限。本研究探讨了pwMS中足背屈过程中感觉运动节律的事件相关去同步(ERD)发作潜伏期,该潜伏期采用客观且独立于人类标准的方法计算,作为基于脑电图(EEG)的生物标志物。记录8名无神经系统疾病或运动功能障碍患者的脑电图信号,以及8名复发缓解型、原发性进行性或继发性进行性ms患者的脑电图信号。记录分为三组:对照组、较重下肢和较轻下肢。使用基于ERD时间过程百分比和聚类深度测试的方法确定ERD发作延迟。erd发病潜伏期中位数和四分位数范围分别为1186.0 (1100.0,1250.0)ms;而对照组的中位数和四分位数范围为656.0 (472.2,950.0)ms。与对照组相比,pwMS组的erd发作潜伏期明显延迟(p . 1)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests.

Multiple sclerosis (MS) is a disorder in which the body's immune system attacks structures of the central nervous system, resulting in lesions that can occur throughout the brain and spinal cord. Cortical lesions, in particular, can contribute to motor dysfunction. Walking disability is reported as the main impairment by people with MS (pwMS), often due to limited ankle movement. This study explored the event-related desynchronization (ERD) onset latency of the sensorimotor rhythms during foot dorsiflexion in pwMS computed using an objective and independent of human criterion method, as an electroencephalogram (EEG) based biomarker. EEG signals were recorded in eight persons with neither neurological condition nor motor dysfunction and eight pwMS with relapsing-remitting, primary progressive or secondary progressive MS. Recordings were divided into three groups: control, more affected lower limb and less affected lower limb. The ERD-onset latency was determined using a method based on the percent of ERD time course and the cluster depth tests. The median and interquartile range of the ERD-onset latency were 1186.0 (1100.0, 1250.0) ms; 1064.0 (1031.0, 1127.0) ms for the more and less affected groups respectively, whereas the median and interquartile range for the control group was 656.0 (472.2, 950.0) ms. There was a significant delay in the ERD-onset latencies of the pwMS groups compared to the control group (p<0.001 for both comparisons). These findings suggest that the ERD-onset latency computed using the proposed method could be used as an EEG biomarker to evaluate disease progression or therapeutic interventions in pwMS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信