Leixia Tian, Qi Wang, Zhiheng Zhou, Xiya Liu, Ming Zhang, Guiying Yan
{"title":"基于元路径的异质图神经网络预测药物联合副作用。","authors":"Leixia Tian, Qi Wang, Zhiheng Zhou, Xiya Liu, Ming Zhang, Guiying Yan","doi":"10.1186/s12859-024-06028-6","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important. In this paper, we built a Metapath-based Aggregated Embedding Model on Single Drug-Side Effect Heterogeneous Information Network (MAEM-SSHIN), which extracts feature from a heterogeneous information network of single drug side effects, and a Graph Convolutional Network on Combinatorial drugs and Side effect Heterogeneous Information Network (GCN-CSHIN), which transforms the complex task of predicting multiple side effects between drug pairs into the more manageable prediction of relationships between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-CSHIN provided a united novel framework for predicting potential side effects in combinatorial drug therapies. This integration enhances prediction accuracy, efficiency, and scalability. Our experimental results demonstrate that this combined framework outperforms existing methodologies in predicting side effects, and marks a significant advancement in pharmaceutical research.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"16"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.\",\"authors\":\"Leixia Tian, Qi Wang, Zhiheng Zhou, Xiya Liu, Ming Zhang, Guiying Yan\",\"doi\":\"10.1186/s12859-024-06028-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important. In this paper, we built a Metapath-based Aggregated Embedding Model on Single Drug-Side Effect Heterogeneous Information Network (MAEM-SSHIN), which extracts feature from a heterogeneous information network of single drug side effects, and a Graph Convolutional Network on Combinatorial drugs and Side effect Heterogeneous Information Network (GCN-CSHIN), which transforms the complex task of predicting multiple side effects between drug pairs into the more manageable prediction of relationships between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-CSHIN provided a united novel framework for predicting potential side effects in combinatorial drug therapies. This integration enhances prediction accuracy, efficiency, and scalability. Our experimental results demonstrate that this combined framework outperforms existing methodologies in predicting side effects, and marks a significant advancement in pharmaceutical research.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"16\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-06028-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06028-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.
In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important. In this paper, we built a Metapath-based Aggregated Embedding Model on Single Drug-Side Effect Heterogeneous Information Network (MAEM-SSHIN), which extracts feature from a heterogeneous information network of single drug side effects, and a Graph Convolutional Network on Combinatorial drugs and Side effect Heterogeneous Information Network (GCN-CSHIN), which transforms the complex task of predicting multiple side effects between drug pairs into the more manageable prediction of relationships between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-CSHIN provided a united novel framework for predicting potential side effects in combinatorial drug therapies. This integration enhances prediction accuracy, efficiency, and scalability. Our experimental results demonstrate that this combined framework outperforms existing methodologies in predicting side effects, and marks a significant advancement in pharmaceutical research.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.