Duygu Gürsoy Gürgen, Arzu Güneş, Oğuzhan Köse, Arife Ahsen Kaplan, Seda Karabulut, M Başak Tunalı, İlknur Keskin
{"title":"苯基硼酸通过MAP激酶在雄激素依赖性(LNCaP)和雄激素非依赖性(PC3)前列腺癌细胞中的抗癌作用","authors":"Duygu Gürsoy Gürgen, Arzu Güneş, Oğuzhan Köse, Arife Ahsen Kaplan, Seda Karabulut, M Başak Tunalı, İlknur Keskin","doi":"10.2174/0118715206352302241227031015","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.</p><p><strong>Methods: </strong>The IC50 values of PBA and colchicine were determined through viability assays in 2D and 3D models. Colony formation, proliferation, and migration assays were conducted. Immunofluorescence intensity analysis of MAPKKK proteins (ERK, JNK, p38) was performed to explore the mechanism of cellular response to PBA.</p><p><strong>Results: </strong>The IC50 values were determined for each treatment group. After 48-hour of PBA treatment, migration was inhibited more effectively than with colchicine in both cancer cell lines. After 24-hour, PBA reduced colony formation and proliferation. PBA treatment for 24-hour decreased JNK expression in PC3 and LNCaP cells in 2D models. Both PBA and colchicine increased p38 expression in PC3 spheroids. PBA's effects on cell deformation were visualized in semi-thin sections, marking the first ultrastructural observation of PBA-induced morphological defects in cancer cells.</p><p><strong>Conclusion: </strong>PBA exerts antimitotic effects by inhibiting proliferation and migration and triggers diverse metabolic responses across different cell lines. Furthermore the low toxicity of PBA's low toxicity on RWPE-1 cells suggests its potential as a promising chemotherapeutic agent for future studies.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticancer Properties of Phenylboronic Acid in Androgen-Dependent (LNCaP) and Androgen-Independent (PC3) Prostate Cancer Cells via MAP Kinases by 2D and 3D Culture Methods.\",\"authors\":\"Duygu Gürsoy Gürgen, Arzu Güneş, Oğuzhan Köse, Arife Ahsen Kaplan, Seda Karabulut, M Başak Tunalı, İlknur Keskin\",\"doi\":\"10.2174/0118715206352302241227031015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.</p><p><strong>Methods: </strong>The IC50 values of PBA and colchicine were determined through viability assays in 2D and 3D models. Colony formation, proliferation, and migration assays were conducted. Immunofluorescence intensity analysis of MAPKKK proteins (ERK, JNK, p38) was performed to explore the mechanism of cellular response to PBA.</p><p><strong>Results: </strong>The IC50 values were determined for each treatment group. After 48-hour of PBA treatment, migration was inhibited more effectively than with colchicine in both cancer cell lines. After 24-hour, PBA reduced colony formation and proliferation. PBA treatment for 24-hour decreased JNK expression in PC3 and LNCaP cells in 2D models. Both PBA and colchicine increased p38 expression in PC3 spheroids. PBA's effects on cell deformation were visualized in semi-thin sections, marking the first ultrastructural observation of PBA-induced morphological defects in cancer cells.</p><p><strong>Conclusion: </strong>PBA exerts antimitotic effects by inhibiting proliferation and migration and triggers diverse metabolic responses across different cell lines. Furthermore the low toxicity of PBA's low toxicity on RWPE-1 cells suggests its potential as a promising chemotherapeutic agent for future studies.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206352302241227031015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206352302241227031015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anticancer Properties of Phenylboronic Acid in Androgen-Dependent (LNCaP) and Androgen-Independent (PC3) Prostate Cancer Cells via MAP Kinases by 2D and 3D Culture Methods.
Objective: This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.
Methods: The IC50 values of PBA and colchicine were determined through viability assays in 2D and 3D models. Colony formation, proliferation, and migration assays were conducted. Immunofluorescence intensity analysis of MAPKKK proteins (ERK, JNK, p38) was performed to explore the mechanism of cellular response to PBA.
Results: The IC50 values were determined for each treatment group. After 48-hour of PBA treatment, migration was inhibited more effectively than with colchicine in both cancer cell lines. After 24-hour, PBA reduced colony formation and proliferation. PBA treatment for 24-hour decreased JNK expression in PC3 and LNCaP cells in 2D models. Both PBA and colchicine increased p38 expression in PC3 spheroids. PBA's effects on cell deformation were visualized in semi-thin sections, marking the first ultrastructural observation of PBA-induced morphological defects in cancer cells.
Conclusion: PBA exerts antimitotic effects by inhibiting proliferation and migration and triggers diverse metabolic responses across different cell lines. Furthermore the low toxicity of PBA's low toxicity on RWPE-1 cells suggests its potential as a promising chemotherapeutic agent for future studies.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.