Samir R Nath, Aneesha Dasgupta, Divyanshu Dubey, Eileen Kokesh, Grayson Beecher, Numrah Fadra, Teerin Liewuck, Sean Pittock, Jason D Doles, William Litchy, Margherita Milone
{"title":"揭示免疫介导的波纹肌病中钙失调和自身免疫。","authors":"Samir R Nath, Aneesha Dasgupta, Divyanshu Dubey, Eileen Kokesh, Grayson Beecher, Numrah Fadra, Teerin Liewuck, Sean Pittock, Jason D Doles, William Litchy, Margherita Milone","doi":"10.1186/s40478-025-01926-z","DOIUrl":null,"url":null,"abstract":"<p><p>Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"11"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease.\",\"authors\":\"Samir R Nath, Aneesha Dasgupta, Divyanshu Dubey, Eileen Kokesh, Grayson Beecher, Numrah Fadra, Teerin Liewuck, Sean Pittock, Jason D Doles, William Litchy, Margherita Milone\",\"doi\":\"10.1186/s40478-025-01926-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"11\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-025-01926-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01926-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease.
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.