D Luke Fischer, Marissa Menard, Omar Z Abdelaziz, Nicholas M Kanaan, Virginia G Cobbs, Richard E Kennedy, Geidy E Serrano, Thomas G Beach, Laura A Volpicelli-Daley
{"title":"路易体疾病中tau和α -突触核蛋白的不同亚细胞定位。","authors":"D Luke Fischer, Marissa Menard, Omar Z Abdelaziz, Nicholas M Kanaan, Virginia G Cobbs, Richard E Kennedy, Geidy E Serrano, Thomas G Beach, Laura A Volpicelli-Daley","doi":"10.1186/s40478-024-01913-w","DOIUrl":null,"url":null,"abstract":"<p><p>Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates. Immunofluorescence for major-histocompatibility complex class 2 (MHCII) and ionized calcium binding adaptor molecule 1 (Iba1) also was performed because inflammation is an additional pathological hallmark of LBDs, and they were a positive control for two markers known to colocalize. The abundance of p-α-syn, p-tau, and MHCII was significantly associated with diagnosis of LBD. Quantification of colocalization showed that MHCII and Iba1 colocalized, demonstrating activated immune cells are mostly microglia. However, p-α-syn rarely colocalized with p-tau or PAD-tau, although the overlap of p-α-syn with PAD-tau was significantly associated with LBD. In the rare cases pathologic α-syn and pathologic tau were found in the same Lewy body or Lewy neurite, tau appeared to surround α-syn but did not colocalize within the same structure. The relationship between tau and α-syn copathology is important for explaining clinical symptoms, severity, and progression, but there is no evidence for frequent, direct protein-protein interactions in the middle temporal gyrus.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"14"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752823/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct subcellular localization of tau and alpha-synuclein in lewy body disease.\",\"authors\":\"D Luke Fischer, Marissa Menard, Omar Z Abdelaziz, Nicholas M Kanaan, Virginia G Cobbs, Richard E Kennedy, Geidy E Serrano, Thomas G Beach, Laura A Volpicelli-Daley\",\"doi\":\"10.1186/s40478-024-01913-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates. Immunofluorescence for major-histocompatibility complex class 2 (MHCII) and ionized calcium binding adaptor molecule 1 (Iba1) also was performed because inflammation is an additional pathological hallmark of LBDs, and they were a positive control for two markers known to colocalize. The abundance of p-α-syn, p-tau, and MHCII was significantly associated with diagnosis of LBD. Quantification of colocalization showed that MHCII and Iba1 colocalized, demonstrating activated immune cells are mostly microglia. However, p-α-syn rarely colocalized with p-tau or PAD-tau, although the overlap of p-α-syn with PAD-tau was significantly associated with LBD. In the rare cases pathologic α-syn and pathologic tau were found in the same Lewy body or Lewy neurite, tau appeared to surround α-syn but did not colocalize within the same structure. The relationship between tau and α-syn copathology is important for explaining clinical symptoms, severity, and progression, but there is no evidence for frequent, direct protein-protein interactions in the middle temporal gyrus.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"14\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752823/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-024-01913-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01913-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Distinct subcellular localization of tau and alpha-synuclein in lewy body disease.
Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates. Immunofluorescence for major-histocompatibility complex class 2 (MHCII) and ionized calcium binding adaptor molecule 1 (Iba1) also was performed because inflammation is an additional pathological hallmark of LBDs, and they were a positive control for two markers known to colocalize. The abundance of p-α-syn, p-tau, and MHCII was significantly associated with diagnosis of LBD. Quantification of colocalization showed that MHCII and Iba1 colocalized, demonstrating activated immune cells are mostly microglia. However, p-α-syn rarely colocalized with p-tau or PAD-tau, although the overlap of p-α-syn with PAD-tau was significantly associated with LBD. In the rare cases pathologic α-syn and pathologic tau were found in the same Lewy body or Lewy neurite, tau appeared to surround α-syn but did not colocalize within the same structure. The relationship between tau and α-syn copathology is important for explaining clinical symptoms, severity, and progression, but there is no evidence for frequent, direct protein-protein interactions in the middle temporal gyrus.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.