Veronica Hurtado-Carneiro, Yolanda Juan-Arevalo, Cinthya N Flores, Carmen Herrero-De-Dios, Ana Perez-Garcia, Cristina Contreras, Miguel Lopez, Elvira Alvarez, Carmen Sanz
{"title":"PAS激酶缺陷雄性小鼠产热能力增强。","authors":"Veronica Hurtado-Carneiro, Yolanda Juan-Arevalo, Cinthya N Flores, Carmen Herrero-De-Dios, Ana Perez-Garcia, Cristina Contreras, Miguel Lopez, Elvira Alvarez, Carmen Sanz","doi":"10.1016/j.bcp.2025.116757","DOIUrl":null,"url":null,"abstract":"<p><p>PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity. This has prompted an investigation into the potential role of PASK on energy expenditure through thermogenesis in adipose tissue. Our results indicate that PASK-deficient male mice exhibited higher brown adipose tissue (BAT) thermogenic activity and heat production. The inhibition of PASK function induces the expression of Uncoupling Protein 1 (UCP1) and the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in BAT. In addition, PASK deficiency promotes the expression of UCP1 and other browning markers such as PR/SET Domain 16 (PRDM16) in inguinal white adipose tissue (WAT). PASK-deficient mice record an enhanced thermogenic response, even under stimuli such as β-3adrenergic receptor agonist or cold. This evidence reveals PASK as a new mechanism modulating BAT thermogenesis.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116757"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermogenesis in PAS Kinase-deficient male mice.\",\"authors\":\"Veronica Hurtado-Carneiro, Yolanda Juan-Arevalo, Cinthya N Flores, Carmen Herrero-De-Dios, Ana Perez-Garcia, Cristina Contreras, Miguel Lopez, Elvira Alvarez, Carmen Sanz\",\"doi\":\"10.1016/j.bcp.2025.116757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity. This has prompted an investigation into the potential role of PASK on energy expenditure through thermogenesis in adipose tissue. Our results indicate that PASK-deficient male mice exhibited higher brown adipose tissue (BAT) thermogenic activity and heat production. The inhibition of PASK function induces the expression of Uncoupling Protein 1 (UCP1) and the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in BAT. In addition, PASK deficiency promotes the expression of UCP1 and other browning markers such as PR/SET Domain 16 (PRDM16) in inguinal white adipose tissue (WAT). PASK-deficient mice record an enhanced thermogenic response, even under stimuli such as β-3adrenergic receptor agonist or cold. This evidence reveals PASK as a new mechanism modulating BAT thermogenesis.</p>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\" \",\"pages\":\"116757\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bcp.2025.116757\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2025.116757","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Enhanced thermogenesis in PAS Kinase-deficient male mice.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity. This has prompted an investigation into the potential role of PASK on energy expenditure through thermogenesis in adipose tissue. Our results indicate that PASK-deficient male mice exhibited higher brown adipose tissue (BAT) thermogenic activity and heat production. The inhibition of PASK function induces the expression of Uncoupling Protein 1 (UCP1) and the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in BAT. In addition, PASK deficiency promotes the expression of UCP1 and other browning markers such as PR/SET Domain 16 (PRDM16) in inguinal white adipose tissue (WAT). PASK-deficient mice record an enhanced thermogenic response, even under stimuli such as β-3adrenergic receptor agonist or cold. This evidence reveals PASK as a new mechanism modulating BAT thermogenesis.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.