碳酸乙烯基局部高浓度钠离子电池电解质间膜形成机理研究。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jiaqi Ding, Longkai Zhang, Xinyu Li, Wenjuan Qiu, Qilu Zhu, Guojun Luo, Xin Xiao, Junmin Nan, Xiaoxi Zuo
{"title":"碳酸乙烯基局部高浓度钠离子电池电解质间膜形成机理研究。","authors":"Jiaqi Ding, Longkai Zhang, Xinyu Li, Wenjuan Qiu, Qilu Zhu, Guojun Luo, Xin Xiao, Junmin Nan, Xiaoxi Zuo","doi":"10.1016/j.jcis.2025.01.110","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems. In this work, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) is introduced into a sodium hexafluorophosphate (NaPF<sub>6</sub>)/ethylene carbonate (EC) electrolyte to design a locally high concentration electrolyte (LHCE), which helps stabilize the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs). By modulating the solvation structure of the electrolyte, a NaF-rich SEI is formed on the surfaces of electrodes. With sodium iron phosphate (NFPO) as the cathode, the cell maintained a capacity retention rate of 91.5 % after 300 cycles at 0.5C. In addition, a sodium nickel iron manganese oxide (NFMO)||Hard carbon (HC) pouch cell achieves a capacity retention of 84.2 % after 500 cycles at 1C. This study provides a new perspective for the understanding and design of locally high concentration electrolytes for sodium-ion batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"153-164"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of solid electrolyte interphase film formation using ethylene carbonate-based local high concentration electrolyte in sodium-ion batteries.\",\"authors\":\"Jiaqi Ding, Longkai Zhang, Xinyu Li, Wenjuan Qiu, Qilu Zhu, Guojun Luo, Xin Xiao, Junmin Nan, Xiaoxi Zuo\",\"doi\":\"10.1016/j.jcis.2025.01.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems. In this work, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) is introduced into a sodium hexafluorophosphate (NaPF<sub>6</sub>)/ethylene carbonate (EC) electrolyte to design a locally high concentration electrolyte (LHCE), which helps stabilize the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs). By modulating the solvation structure of the electrolyte, a NaF-rich SEI is formed on the surfaces of electrodes. With sodium iron phosphate (NFPO) as the cathode, the cell maintained a capacity retention rate of 91.5 % after 300 cycles at 0.5C. In addition, a sodium nickel iron manganese oxide (NFMO)||Hard carbon (HC) pouch cell achieves a capacity retention of 84.2 % after 500 cycles at 1C. This study provides a new perspective for the understanding and design of locally high concentration electrolytes for sodium-ion batteries.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"685 \",\"pages\":\"153-164\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.01.110\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.110","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池具有资源丰富、成本低等优点,是下一代大规模储能技术的潜在候选者。然而,钠离子电池在循环过程中的容量衰减是一个主要的挑战。合理设计电解液是解决这些问题的途径之一。本研究将1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(HFE)引入六氟磷酸钠(NaPF6)/碳酸乙烯(EC)电解质中,设计了一种局部高浓度电解质(LHCE),有助于稳定钠离子电池(sib)中固体电解质间相(SEI)。通过调节电解液的溶剂化结构,在电极表面形成富naf的SEI。以磷酸铁钠(NFPO)为阴极,在0.5℃下循环300次后,电池容量保持率为91.5%。此外,钠镍铁锰氧化物(NFMO)||硬碳(HC)袋状电池在1C下循环500次后,容量保持率达到84.2%。本研究为钠离子电池局部高浓度电解质的认识和设计提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of solid electrolyte interphase film formation using ethylene carbonate-based local high concentration electrolyte in sodium-ion batteries.

Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems. In this work, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) is introduced into a sodium hexafluorophosphate (NaPF6)/ethylene carbonate (EC) electrolyte to design a locally high concentration electrolyte (LHCE), which helps stabilize the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs). By modulating the solvation structure of the electrolyte, a NaF-rich SEI is formed on the surfaces of electrodes. With sodium iron phosphate (NFPO) as the cathode, the cell maintained a capacity retention rate of 91.5 % after 300 cycles at 0.5C. In addition, a sodium nickel iron manganese oxide (NFMO)||Hard carbon (HC) pouch cell achieves a capacity retention of 84.2 % after 500 cycles at 1C. This study provides a new perspective for the understanding and design of locally high concentration electrolytes for sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信