Chao Zheng , Zhiming Xiao , Keyi Xian , Heng Wen , Na Lu , Xinyou He , Long Ye , Kejie Du , Bao Zhang , Xing Ou , Chunhui Wang
{"title":"通过界面保护和本体优化强化离子扩散控制富镍无钴单晶阴极微裂纹。","authors":"Chao Zheng , Zhiming Xiao , Keyi Xian , Heng Wen , Na Lu , Xinyou He , Long Ye , Kejie Du , Bao Zhang , Xing Ou , Chunhui Wang","doi":"10.1016/j.jcis.2025.01.079","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>2</sub> materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 138-147"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization\",\"authors\":\"Chao Zheng , Zhiming Xiao , Keyi Xian , Heng Wen , Na Lu , Xinyou He , Long Ye , Kejie Du , Bao Zhang , Xing Ou , Chunhui Wang\",\"doi\":\"10.1016/j.jcis.2025.01.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>2</sub> materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"684 \",\"pages\":\"Pages 138-147\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725000931\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725000931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies