Zeyuan Zhuang , Haoran Wu , Zongyi Li , Mingrui Liao , Kangcheng Shen , Renzhi Li , Stephen Hall , Cavan Kalonia , Kai Tao , Xuzhi Hu , Jian Ren Lu
{"title":"通过非离子表面活性剂的竞争性界面吸附保护单克隆抗体。","authors":"Zeyuan Zhuang , Haoran Wu , Zongyi Li , Mingrui Liao , Kangcheng Shen , Renzhi Li , Stephen Hall , Cavan Kalonia , Kai Tao , Xuzhi Hu , Jian Ren Lu","doi":"10.1016/j.jcis.2024.12.214","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><div>Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation. But how surface hydrophobicity affects the adsorption and desorption of mAbs and nonionic surfactants individually and as a mixture remains inconclusive.</div></div><div><h3>Experiments</h3><div>The rapid tuning of the siliconized surface from hydrophobic to hydrophilic was controlled by the UV oxidation time of a self-assembled trimethoxy(7-octen-1-yl)silane (TMOS) monolayer. Spectroscopic ellipsometry and neutron reflection were used to determine the dynamic adsorption and structural changes of the co-adsorbed mAb (COE-3) and the commercial nonionic surfactant PS80, which is composed primarily of polyoxyethylene-sorbitan monooleate with an average molecular weight of about 1310 g/mol.</div></div><div><h3>Findings</h3><div>COE-3 adsorption on both TMOS or UV-TMOS surface was irreversible. However, nonionic surfactant PS80 could partially remove pre-adsorbed COE-3 from these surfaces, forming a co-adsorption layer. Interestingly, while the hydrophobic TMOS surface prevented mAb adsorption when pre-treated with PS80, the amphiphilic UV-TMOS did not. Furthermore, when COE-3 and PS80 were injected as a mixture, PS80 formed a preventative layer on both surfaces against COE-3 adsorption. These results highlight the significance of surface hydrophobicity in controlling mAb adsorption in the presence of nonionic surfactants.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 819-830"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protecting monoclonal antibodies via competitive interfacial adsorption of nonionic surfactants\",\"authors\":\"Zeyuan Zhuang , Haoran Wu , Zongyi Li , Mingrui Liao , Kangcheng Shen , Renzhi Li , Stephen Hall , Cavan Kalonia , Kai Tao , Xuzhi Hu , Jian Ren Lu\",\"doi\":\"10.1016/j.jcis.2024.12.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Hypothesis</h3><div>Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation. But how surface hydrophobicity affects the adsorption and desorption of mAbs and nonionic surfactants individually and as a mixture remains inconclusive.</div></div><div><h3>Experiments</h3><div>The rapid tuning of the siliconized surface from hydrophobic to hydrophilic was controlled by the UV oxidation time of a self-assembled trimethoxy(7-octen-1-yl)silane (TMOS) monolayer. Spectroscopic ellipsometry and neutron reflection were used to determine the dynamic adsorption and structural changes of the co-adsorbed mAb (COE-3) and the commercial nonionic surfactant PS80, which is composed primarily of polyoxyethylene-sorbitan monooleate with an average molecular weight of about 1310 g/mol.</div></div><div><h3>Findings</h3><div>COE-3 adsorption on both TMOS or UV-TMOS surface was irreversible. However, nonionic surfactant PS80 could partially remove pre-adsorbed COE-3 from these surfaces, forming a co-adsorption layer. Interestingly, while the hydrophobic TMOS surface prevented mAb adsorption when pre-treated with PS80, the amphiphilic UV-TMOS did not. Furthermore, when COE-3 and PS80 were injected as a mixture, PS80 formed a preventative layer on both surfaces against COE-3 adsorption. These results highlight the significance of surface hydrophobicity in controlling mAb adsorption in the presence of nonionic surfactants.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"684 \",\"pages\":\"Pages 819-830\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724030686\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724030686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Protecting monoclonal antibodies via competitive interfacial adsorption of nonionic surfactants
Hypothesis
Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation. But how surface hydrophobicity affects the adsorption and desorption of mAbs and nonionic surfactants individually and as a mixture remains inconclusive.
Experiments
The rapid tuning of the siliconized surface from hydrophobic to hydrophilic was controlled by the UV oxidation time of a self-assembled trimethoxy(7-octen-1-yl)silane (TMOS) monolayer. Spectroscopic ellipsometry and neutron reflection were used to determine the dynamic adsorption and structural changes of the co-adsorbed mAb (COE-3) and the commercial nonionic surfactant PS80, which is composed primarily of polyoxyethylene-sorbitan monooleate with an average molecular weight of about 1310 g/mol.
Findings
COE-3 adsorption on both TMOS or UV-TMOS surface was irreversible. However, nonionic surfactant PS80 could partially remove pre-adsorbed COE-3 from these surfaces, forming a co-adsorption layer. Interestingly, while the hydrophobic TMOS surface prevented mAb adsorption when pre-treated with PS80, the amphiphilic UV-TMOS did not. Furthermore, when COE-3 and PS80 were injected as a mixture, PS80 formed a preventative layer on both surfaces against COE-3 adsorption. These results highlight the significance of surface hydrophobicity in controlling mAb adsorption in the presence of nonionic surfactants.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies