Joana Mariz, Ali Nawaz, Yvonne Bösch, Christian Wurzbacher
{"title":"通过连续单细胞筛选探索环境微真菌多样性。","authors":"Joana Mariz, Ali Nawaz, Yvonne Bösch, Christian Wurzbacher","doi":"10.1111/1755-0998.14055","DOIUrl":null,"url":null,"abstract":"<p><p>Known for its remarkable diversity and ecological importance, the fungal kingdom remains largely unexplored. In fact, the number of unknown and undescribed fungi is predicted to exceed the number of known fungal species by far. Despite efforts to uncover these dark fungal taxa, we still face inherent sampling biases and methodological limitations. Here, we present a framework that combines taxonomic knowledge, molecular biology and data processing to explore the fungal biodiversity of enigmatic aquatic fungal lineages. Our work is based on serial screening of environmental fungal cells to approach unknown fungal taxa. Microscopic documentation is followed by DNA analysis of laser micro-dissected cells, coupled with a ribosomal operon barcoding step realised by long-read sequencing, followed by an optional whole genome sequencing step. We tested this approach on a range of aquatic fungal cells mostly belonging to the ecological group of aquatic hyphomycetes derived from environmental samples. From this initial screening, we were able to identify 60 potentially new fungal taxa in the target dataset. By extending this methodology to other fungal lineages associated with different habitats, we expect to increasingly characterise the molecular barcodes of dark fungal taxa in diverse environmental samples. This work offers a promising solution to the challenges posed by unknown and unculturable fungi and holds the potential to be applied to the diverse lineages of undescribed microeukaryotes.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14055"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Environmental Microfungal Diversity Through Serial Single Cell Screening.\",\"authors\":\"Joana Mariz, Ali Nawaz, Yvonne Bösch, Christian Wurzbacher\",\"doi\":\"10.1111/1755-0998.14055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Known for its remarkable diversity and ecological importance, the fungal kingdom remains largely unexplored. In fact, the number of unknown and undescribed fungi is predicted to exceed the number of known fungal species by far. Despite efforts to uncover these dark fungal taxa, we still face inherent sampling biases and methodological limitations. Here, we present a framework that combines taxonomic knowledge, molecular biology and data processing to explore the fungal biodiversity of enigmatic aquatic fungal lineages. Our work is based on serial screening of environmental fungal cells to approach unknown fungal taxa. Microscopic documentation is followed by DNA analysis of laser micro-dissected cells, coupled with a ribosomal operon barcoding step realised by long-read sequencing, followed by an optional whole genome sequencing step. We tested this approach on a range of aquatic fungal cells mostly belonging to the ecological group of aquatic hyphomycetes derived from environmental samples. From this initial screening, we were able to identify 60 potentially new fungal taxa in the target dataset. By extending this methodology to other fungal lineages associated with different habitats, we expect to increasingly characterise the molecular barcodes of dark fungal taxa in diverse environmental samples. This work offers a promising solution to the challenges posed by unknown and unculturable fungi and holds the potential to be applied to the diverse lineages of undescribed microeukaryotes.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14055\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14055\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring Environmental Microfungal Diversity Through Serial Single Cell Screening.
Known for its remarkable diversity and ecological importance, the fungal kingdom remains largely unexplored. In fact, the number of unknown and undescribed fungi is predicted to exceed the number of known fungal species by far. Despite efforts to uncover these dark fungal taxa, we still face inherent sampling biases and methodological limitations. Here, we present a framework that combines taxonomic knowledge, molecular biology and data processing to explore the fungal biodiversity of enigmatic aquatic fungal lineages. Our work is based on serial screening of environmental fungal cells to approach unknown fungal taxa. Microscopic documentation is followed by DNA analysis of laser micro-dissected cells, coupled with a ribosomal operon barcoding step realised by long-read sequencing, followed by an optional whole genome sequencing step. We tested this approach on a range of aquatic fungal cells mostly belonging to the ecological group of aquatic hyphomycetes derived from environmental samples. From this initial screening, we were able to identify 60 potentially new fungal taxa in the target dataset. By extending this methodology to other fungal lineages associated with different habitats, we expect to increasingly characterise the molecular barcodes of dark fungal taxa in diverse environmental samples. This work offers a promising solution to the challenges posed by unknown and unculturable fungi and holds the potential to be applied to the diverse lineages of undescribed microeukaryotes.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.