Rachel B. Dietrich, Lily Lincoln, Shima Momen, Benjamin B. Minkoff, Michael R. Sussman, Audrey L. Girard
{"title":"蛋白质和脂质氧化在高蛋白棒贮藏硬化中的作用。","authors":"Rachel B. Dietrich, Lily Lincoln, Shima Momen, Benjamin B. Minkoff, Michael R. Sussman, Audrey L. Girard","doi":"10.1111/1750-3841.17663","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars. We investigated the role of protein and lipid oxidation, Maillard reactions, moisture loss, protein aggregation, and microstructural changes in the hardening of pea, whey, and rice protein bars over a storage period of 6 weeks (hardness increased 7.2×, 5.4×, and 4.4×, respectively). Changes in tryptophan fluorescence, free sulfhydryl content (e.g., loss of 57% for pea and 44% for whey), and carbonyl content demonstrated that pea and whey bars underwent protein oxidation. Lipid oxidation also occurred, demonstrated by increased peroxide and thiobarbituric acid-reactive substance values. Rice bars, however, did not undergo oxidation. Mass spectrometry indicated greater Maillard-reaction-related protein glycations formed in pea and whey bars (6.9% and 7.7%, respectively) than in rice bars (2.1%). SDS-PAGE revealed that pea and whey, but not rice, proteins aggregated during storage. Overall, this study found that moisture loss, protein and lipid oxidation, Maillard reactions, and protein aggregation correlated with bar hardening. Chemical changes may cause protein aggregation, resulting in hardening. Likely because of rice proteins’ innate insolubility and disulfide linkages, rice protein bars were less susceptible to chemical changes and aggregation and hardened more slowly than whey and pea protein bars.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <p>This study shows that lipid and protein oxidation are correlated with protein bar hardening in both pea and whey protein bars. Additionally, this work suggests that rice protein bars may harden more slowly than pea and whey bars. These findings suggest that potential strategies to prevent bar hardening and extend shelf life include (1) adding antioxidants to prevent oxidation and (2) using rice proteins to partially or fully substitute other protein isolates.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of protein and lipid oxidation in hardening of high-protein bars during storage\",\"authors\":\"Rachel B. Dietrich, Lily Lincoln, Shima Momen, Benjamin B. Minkoff, Michael R. Sussman, Audrey L. Girard\",\"doi\":\"10.1111/1750-3841.17663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars. We investigated the role of protein and lipid oxidation, Maillard reactions, moisture loss, protein aggregation, and microstructural changes in the hardening of pea, whey, and rice protein bars over a storage period of 6 weeks (hardness increased 7.2×, 5.4×, and 4.4×, respectively). Changes in tryptophan fluorescence, free sulfhydryl content (e.g., loss of 57% for pea and 44% for whey), and carbonyl content demonstrated that pea and whey bars underwent protein oxidation. Lipid oxidation also occurred, demonstrated by increased peroxide and thiobarbituric acid-reactive substance values. Rice bars, however, did not undergo oxidation. Mass spectrometry indicated greater Maillard-reaction-related protein glycations formed in pea and whey bars (6.9% and 7.7%, respectively) than in rice bars (2.1%). SDS-PAGE revealed that pea and whey, but not rice, proteins aggregated during storage. Overall, this study found that moisture loss, protein and lipid oxidation, Maillard reactions, and protein aggregation correlated with bar hardening. Chemical changes may cause protein aggregation, resulting in hardening. Likely because of rice proteins’ innate insolubility and disulfide linkages, rice protein bars were less susceptible to chemical changes and aggregation and hardened more slowly than whey and pea protein bars.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical Application</h3>\\n \\n <p>This study shows that lipid and protein oxidation are correlated with protein bar hardening in both pea and whey protein bars. Additionally, this work suggests that rice protein bars may harden more slowly than pea and whey bars. These findings suggest that potential strategies to prevent bar hardening and extend shelf life include (1) adding antioxidants to prevent oxidation and (2) using rice proteins to partially or fully substitute other protein isolates.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17663\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17663","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Role of protein and lipid oxidation in hardening of high-protein bars during storage
Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars. We investigated the role of protein and lipid oxidation, Maillard reactions, moisture loss, protein aggregation, and microstructural changes in the hardening of pea, whey, and rice protein bars over a storage period of 6 weeks (hardness increased 7.2×, 5.4×, and 4.4×, respectively). Changes in tryptophan fluorescence, free sulfhydryl content (e.g., loss of 57% for pea and 44% for whey), and carbonyl content demonstrated that pea and whey bars underwent protein oxidation. Lipid oxidation also occurred, demonstrated by increased peroxide and thiobarbituric acid-reactive substance values. Rice bars, however, did not undergo oxidation. Mass spectrometry indicated greater Maillard-reaction-related protein glycations formed in pea and whey bars (6.9% and 7.7%, respectively) than in rice bars (2.1%). SDS-PAGE revealed that pea and whey, but not rice, proteins aggregated during storage. Overall, this study found that moisture loss, protein and lipid oxidation, Maillard reactions, and protein aggregation correlated with bar hardening. Chemical changes may cause protein aggregation, resulting in hardening. Likely because of rice proteins’ innate insolubility and disulfide linkages, rice protein bars were less susceptible to chemical changes and aggregation and hardened more slowly than whey and pea protein bars.
Practical Application
This study shows that lipid and protein oxidation are correlated with protein bar hardening in both pea and whey protein bars. Additionally, this work suggests that rice protein bars may harden more slowly than pea and whey bars. These findings suggest that potential strategies to prevent bar hardening and extend shelf life include (1) adding antioxidants to prevent oxidation and (2) using rice proteins to partially or fully substitute other protein isolates.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.