Fengyuan Lu, En Li, Yifeng Gao, Yan Zhang, Lijuan Kong, Xiaoyu Yang
{"title":"达格列净通过蛋白转化酶枯草杆菌素/kexin 9型/低密度脂蛋白受体途径调节肝脏脂质代谢。","authors":"Fengyuan Lu, En Li, Yifeng Gao, Yan Zhang, Lijuan Kong, Xiaoyu Yang","doi":"10.1111/dom.16202","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.</p><p><strong>Methods: </strong>We built a model of glucose and lipid metabolism disorder in vivo and in vitro, and explored the regulatory mechanism of dapagliflozin in regulating liver lipid metabolism.</p><p><strong>Results: </strong>We found that the SGLT2i dapagliflozin significantly reduced serum levels of PCSK9, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) in high-fat diet (HFD)-fed mice, while also improving hepatic steatosis. In vitro studies confirmed that dapagliflozin increased LDL receptor (LDLR) expression in HepG2 cells, enhancing their ability to uptake LDL-C.</p><p><strong>Conclusions: </strong>Further mechanistic studies revealed that the hepatocyte nuclear factor-1-alpha (HNF1α)/PCSK9/LDLR signalling pathway may be involved in dapagliflozin's regulation of lipid metabolism homeostasis.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin modulates hepatic lipid metabolism through the proprotein convertase subtilisin/kexin type 9/low density lipoprotein receptor pathway.\",\"authors\":\"Fengyuan Lu, En Li, Yifeng Gao, Yan Zhang, Lijuan Kong, Xiaoyu Yang\",\"doi\":\"10.1111/dom.16202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.</p><p><strong>Methods: </strong>We built a model of glucose and lipid metabolism disorder in vivo and in vitro, and explored the regulatory mechanism of dapagliflozin in regulating liver lipid metabolism.</p><p><strong>Results: </strong>We found that the SGLT2i dapagliflozin significantly reduced serum levels of PCSK9, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) in high-fat diet (HFD)-fed mice, while also improving hepatic steatosis. In vitro studies confirmed that dapagliflozin increased LDL receptor (LDLR) expression in HepG2 cells, enhancing their ability to uptake LDL-C.</p><p><strong>Conclusions: </strong>Further mechanistic studies revealed that the hepatocyte nuclear factor-1-alpha (HNF1α)/PCSK9/LDLR signalling pathway may be involved in dapagliflozin's regulation of lipid metabolism homeostasis.</p>\",\"PeriodicalId\":158,\"journal\":{\"name\":\"Diabetes, Obesity & Metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes, Obesity & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/dom.16202\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16202","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Dapagliflozin modulates hepatic lipid metabolism through the proprotein convertase subtilisin/kexin type 9/low density lipoprotein receptor pathway.
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.
Methods: We built a model of glucose and lipid metabolism disorder in vivo and in vitro, and explored the regulatory mechanism of dapagliflozin in regulating liver lipid metabolism.
Results: We found that the SGLT2i dapagliflozin significantly reduced serum levels of PCSK9, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) in high-fat diet (HFD)-fed mice, while also improving hepatic steatosis. In vitro studies confirmed that dapagliflozin increased LDL receptor (LDLR) expression in HepG2 cells, enhancing their ability to uptake LDL-C.
Conclusions: Further mechanistic studies revealed that the hepatocyte nuclear factor-1-alpha (HNF1α)/PCSK9/LDLR signalling pathway may be involved in dapagliflozin's regulation of lipid metabolism homeostasis.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.