脂质/溶质稳定的紫杉醇和博舒替尼纳米晶体在非小细胞肺癌治疗中的协同作用的配方和评价。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Manish Kumar, Pooja Goswami, Abhishek Jha, Vividha Dhapte-Pawar, Biplob Koch, Brahmeshwar Mishra
{"title":"脂质/溶质稳定的紫杉醇和博舒替尼纳米晶体在非小细胞肺癌治疗中的协同作用的配方和评价。","authors":"Manish Kumar, Pooja Goswami, Abhishek Jha, Vividha Dhapte-Pawar, Biplob Koch, Brahmeshwar Mishra","doi":"10.1021/acs.molpharmaceut.4c01334","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer. Furthermore, the nanocrystals of each can also be prepared and in combination can produce a more pronounced impact than the drug combination. Herein, the prepared Soluplus/lipid-stabilized nanocrystals of paclitaxel and bosutinib were rod to cubic in shape of about 150-250 nm. The nanocrystals were stable, provided controlled drug release, and exhibited a higher aerosolization performance. The nanocrystal combination demonstrated higher anticancer activity than the drug combination synergy against A549 cancer cells. The nanocrystals increased the level of cellular internalization in cancer cells, thereby inducing higher ROS generation and apoptosis of cancer cells. Furthermore, the lipid/Soluplus-stabilized nanocrystals exhibited higher translocation potential compared with only Soluplus-stabilized nanocrystals. The nanocrystals administered intratracheally showed a lower drug distribution to other organs, with prolonged drug retention in the lungs, suggesting the higher efficacy of developed nanocrystals in targeting the lungs. In conclusion, lipid-modified nanocrystals can be a novel approach for the effective management of lung cancer.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Evaluation of Lipid/Soluplus-Stabilized Nanocrystals of Paclitaxel and Bosutinib for a Synergistic Effect in Non-Small Cell Lung Cancer Therapy.\",\"authors\":\"Manish Kumar, Pooja Goswami, Abhishek Jha, Vividha Dhapte-Pawar, Biplob Koch, Brahmeshwar Mishra\",\"doi\":\"10.1021/acs.molpharmaceut.4c01334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer. Furthermore, the nanocrystals of each can also be prepared and in combination can produce a more pronounced impact than the drug combination. Herein, the prepared Soluplus/lipid-stabilized nanocrystals of paclitaxel and bosutinib were rod to cubic in shape of about 150-250 nm. The nanocrystals were stable, provided controlled drug release, and exhibited a higher aerosolization performance. The nanocrystal combination demonstrated higher anticancer activity than the drug combination synergy against A549 cancer cells. The nanocrystals increased the level of cellular internalization in cancer cells, thereby inducing higher ROS generation and apoptosis of cancer cells. Furthermore, the lipid/Soluplus-stabilized nanocrystals exhibited higher translocation potential compared with only Soluplus-stabilized nanocrystals. The nanocrystals administered intratracheally showed a lower drug distribution to other organs, with prolonged drug retention in the lungs, suggesting the higher efficacy of developed nanocrystals in targeting the lungs. In conclusion, lipid-modified nanocrystals can be a novel approach for the effective management of lung cancer.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01334\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

酪氨酸激酶抑制剂已被用于肺癌的治疗,因为它们在调节不调节通路或突变基因中的作用。博舒替尼,一种非受体酪氨酸激酶,最近被研究用于肺癌治疗。博舒替尼也可以与紫杉醇联合使用,以获得有效治疗肺癌的协同效应。此外,还可以制备每一种纳米晶体,并且结合起来可以产生比药物组合更明显的影响。本文制备的紫杉醇和博舒替尼的Soluplus/脂质稳定纳米晶体为棒状至立方状,形状约为150 ~ 250 nm。纳米晶体稳定,药物释放可控,具有较高的雾化性能。纳米晶体联合对A549癌细胞的抗癌活性高于药物联合协同作用。纳米晶体增加了癌细胞的细胞内化水平,从而诱导更高的ROS生成和癌细胞凋亡。此外,脂质/ soluplus稳定的纳米晶体比只有soluplus稳定的纳米晶体表现出更高的易位电位。气管内给药的纳米晶体显示药物在其他器官的分布较低,药物在肺部的滞留时间较长,这表明开发的纳米晶体靶向肺部的效果更高。总之,脂质修饰纳米晶体可能是一种有效治疗肺癌的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation and Evaluation of Lipid/Soluplus-Stabilized Nanocrystals of Paclitaxel and Bosutinib for a Synergistic Effect in Non-Small Cell Lung Cancer Therapy.

Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer. Furthermore, the nanocrystals of each can also be prepared and in combination can produce a more pronounced impact than the drug combination. Herein, the prepared Soluplus/lipid-stabilized nanocrystals of paclitaxel and bosutinib were rod to cubic in shape of about 150-250 nm. The nanocrystals were stable, provided controlled drug release, and exhibited a higher aerosolization performance. The nanocrystal combination demonstrated higher anticancer activity than the drug combination synergy against A549 cancer cells. The nanocrystals increased the level of cellular internalization in cancer cells, thereby inducing higher ROS generation and apoptosis of cancer cells. Furthermore, the lipid/Soluplus-stabilized nanocrystals exhibited higher translocation potential compared with only Soluplus-stabilized nanocrystals. The nanocrystals administered intratracheally showed a lower drug distribution to other organs, with prolonged drug retention in the lungs, suggesting the higher efficacy of developed nanocrystals in targeting the lungs. In conclusion, lipid-modified nanocrystals can be a novel approach for the effective management of lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信