增强经皮给药:整合微针与可生物降解微粒。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Hiep X Nguyen, Thomas Kipping, Ajay K Banga
{"title":"增强经皮给药:整合微针与可生物降解微粒。","authors":"Hiep X Nguyen, Thomas Kipping, Ajay K Banga","doi":"10.1021/acs.molpharmaceut.4c01202","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide-<i>co</i>-glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition. The efficacy of microneedles in disrupting skin integrity was demonstrated by scanning electron microscopy, dye binding, histological examination, confocal laser microscopy, and pore size analysis. Microneedle-mediated skin microporation led to a substantial reduction in skin electrical resistance and a concomitant increase in transepidermal water loss. <i>In vitro</i> permeation experiments using human skin delivered microparticles into microporated skin and demonstrated a considerable difference in methotrexate delivery among the polymer groups. Microneedle treatment significantly amplified cumulative drug delivery, steady-state flux, diffusion coefficient, permeability coefficient, and drug concentration within skin layers while concurrently diminishing lag time (<i>p</i> < 0.05). Furthermore, a robust correlation was established between microparticle properties (cumulative release, release rate, encapsulation efficiency) and drug deposition in the skin. In conclusion, the synergistic combination of Dr. Pen microneedles and PLGA microparticles facilitated enhanced and regulated transdermal methotrexate delivery.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.\",\"authors\":\"Hiep X Nguyen, Thomas Kipping, Ajay K Banga\",\"doi\":\"10.1021/acs.molpharmaceut.4c01202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide-<i>co</i>-glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition. The efficacy of microneedles in disrupting skin integrity was demonstrated by scanning electron microscopy, dye binding, histological examination, confocal laser microscopy, and pore size analysis. Microneedle-mediated skin microporation led to a substantial reduction in skin electrical resistance and a concomitant increase in transepidermal water loss. <i>In vitro</i> permeation experiments using human skin delivered microparticles into microporated skin and demonstrated a considerable difference in methotrexate delivery among the polymer groups. Microneedle treatment significantly amplified cumulative drug delivery, steady-state flux, diffusion coefficient, permeability coefficient, and drug concentration within skin layers while concurrently diminishing lag time (<i>p</i> < 0.05). Furthermore, a robust correlation was established between microparticle properties (cumulative release, release rate, encapsulation efficiency) and drug deposition in the skin. In conclusion, the synergistic combination of Dr. Pen microneedles and PLGA microparticles facilitated enhanced and regulated transdermal methotrexate delivery.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01202\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01202","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过使用Dr. Pen微针和由8个聚合物等级(Expansorb DLG 95-4A、DLG 75-5A、DLG 50-2A、DLG 50-5A、DLG 50-8A、DLG 50-6P、DLG 50-7P和DLG 10-15A)配制的聚(d,l-丙交酯-羟基乙酸)酸微颗粒来增强甲氨甲呤通过人体皮肤的透皮递送。对微颗粒进行了全面的表征,包括各种参数,如大小、电荷、形态、微胶囊化效率、收率、释放动力学和化学成分。通过扫描电子显微镜、染料结合、组织学检查、共聚焦激光显微镜和孔径分析证明了微针破坏皮肤完整性的有效性。微针介导的皮肤微穿孔导致皮肤电阻的大幅降低,并随之增加经皮失水。在人体皮肤的体外渗透实验中,微颗粒进入微孔皮肤,并证明了甲氨蝶呤在聚合物群之间的递送有相当大的差异。微针治疗显著增加了累积给药量、稳态通量、扩散系数、渗透系数和药物在皮肤层内的浓度,同时减少了滞后时间(p < 0.05)。此外,还建立了微颗粒特性(累积释放、释放速率、包封效率)与药物在皮肤中的沉积之间的相关性。总之,Dr. Pen微针和PLGA微颗粒的协同组合促进了甲氨蝶呤经皮给药的增强和调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide-co-glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition. The efficacy of microneedles in disrupting skin integrity was demonstrated by scanning electron microscopy, dye binding, histological examination, confocal laser microscopy, and pore size analysis. Microneedle-mediated skin microporation led to a substantial reduction in skin electrical resistance and a concomitant increase in transepidermal water loss. In vitro permeation experiments using human skin delivered microparticles into microporated skin and demonstrated a considerable difference in methotrexate delivery among the polymer groups. Microneedle treatment significantly amplified cumulative drug delivery, steady-state flux, diffusion coefficient, permeability coefficient, and drug concentration within skin layers while concurrently diminishing lag time (p < 0.05). Furthermore, a robust correlation was established between microparticle properties (cumulative release, release rate, encapsulation efficiency) and drug deposition in the skin. In conclusion, the synergistic combination of Dr. Pen microneedles and PLGA microparticles facilitated enhanced and regulated transdermal methotrexate delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信