利用荧光各向异性、电子顺磁共振光谱和热分析评价奥氮平和三环抗抑郁药对曲洛克斯脂质过氧化保护作用的反应性。

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yusuke Horizumi, Reo Tanada, Yuya Kurosawa, Miwa Takatsuka, Tomohiro Tsuchida, Satoru Goto
{"title":"利用荧光各向异性、电子顺磁共振光谱和热分析评价奥氮平和三环抗抑郁药对曲洛克斯脂质过氧化保护作用的反应性。","authors":"Yusuke Horizumi, Reo Tanada, Yuya Kurosawa, Miwa Takatsuka, Tomohiro Tsuchida, Satoru Goto","doi":"10.1021/acschemneuro.4c00702","DOIUrl":null,"url":null,"abstract":"<p><p>Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis.\",\"authors\":\"Yusuke Horizumi, Reo Tanada, Yuya Kurosawa, Miwa Takatsuka, Tomohiro Tsuchida, Satoru Goto\",\"doi\":\"10.1021/acschemneuro.4c00702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00702\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00702","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多作用受体靶向抗精神病药和三环抗抑郁药刺激各种神经递质受体,尽管突触后受体和突触前再摄取转运蛋白的靶点不同。它们的辅助和不良作用可能是由多个靶点或神经元膜的修饰引起的。为了评估膜对奥氮平、丙咪嗪、地西帕明、阿米替林、利多卡因和二布卡因的反应,我们检测了蛋黄磷脂酰胆碱脂质体对脂质过氧化的抑制作用。通过对比,它们对膜流动性的影响被测量为Trolox对脂质氧化的抑制活性的抑制贡献。这些药物抑制脂质过氧化,排除有害的活性氧和Trolox的保护作用。饱和磷脂脂质体药物中1,6-二苯基-1,3,5-己三烯的荧光各向异性表明奥氮平、丙咪嗪和二布卡因增强了膜的流动性。利用电子顺磁共振实验测定了2,2-二苯基吡啶肼基自由基和galvinoxyl自由基的清除活性,并用差示扫描量热法测定了它们的分子柔韧性。线性自由能关系法的多元回归分析和对比研究表明,脂质体的膜流动性诱导了脂质过氧化抑制活性,而不依赖于药物的自由基清除活性。我们讨论了这些药物如何作用于神经膜,旨在确定未证实的功能和膜流动性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis.

Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信