Xiaofei Song, Ying Zhang, Yuxin Liu, Gang Chen, Long Zhao
{"title":"吗啡联合PD-1激动剂增强镇痛效果及减少副作用。","authors":"Xiaofei Song, Ying Zhang, Yuxin Liu, Gang Chen, Long Zhao","doi":"10.1021/acschemneuro.4c00732","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.g., hyperalgesia and tolerance) manifest during chronic administration, thus counteracting morphine analgesia. Investigators have sought methods to widen the therapeutic window of morphine in the management of chronic pain. Programmed cell death protein 1 (PD-1) is a recently validated analgesic target and is coexpressed with the mu opioid receptor (μOR) in dorsal root ganglion (DRG) sensory neurons. Here, we present evidence that PD-1 regulates the expression of μOR mRNA and influences μOR-mediated analgesia. Notably, the concomitant administration of PD-1 agonist H-20 greatly reduces the dosage of morphine needed for analgesia, thereby significantly decreasing opioid-related side effects. This new combination therapy may provide a solution for managing chronic pain in patients who require morphine.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Analgesic Efficacy and Reduced Side Effects of Morphine by Combination with PD-1 Agonist.\",\"authors\":\"Xiaofei Song, Ying Zhang, Yuxin Liu, Gang Chen, Long Zhao\",\"doi\":\"10.1021/acschemneuro.4c00732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.g., hyperalgesia and tolerance) manifest during chronic administration, thus counteracting morphine analgesia. Investigators have sought methods to widen the therapeutic window of morphine in the management of chronic pain. Programmed cell death protein 1 (PD-1) is a recently validated analgesic target and is coexpressed with the mu opioid receptor (μOR) in dorsal root ganglion (DRG) sensory neurons. Here, we present evidence that PD-1 regulates the expression of μOR mRNA and influences μOR-mediated analgesia. Notably, the concomitant administration of PD-1 agonist H-20 greatly reduces the dosage of morphine needed for analgesia, thereby significantly decreasing opioid-related side effects. This new combination therapy may provide a solution for managing chronic pain in patients who require morphine.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00732\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00732","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
慢性疼痛是一种使人衰弱的疾病,治疗起来仍然具有挑战性。吗啡是治疗病理性疼痛最常用的药物。然而,有害的副作用(如痛觉过敏和耐受性)在慢性给药期间表现出来,从而抵消吗啡镇痛。研究者们一直在寻找方法来扩大吗啡治疗慢性疼痛的窗口期。程序性细胞死亡蛋白1 (Programmed cell death protein 1, PD-1)是最近证实的一种镇痛靶点,它在背根神经节(DRG)感觉神经元中与mu阿片受体(μOR)共表达。本研究表明,PD-1调节μOR mRNA的表达,影响μOR介导的镇痛。值得注意的是,同时给药PD-1激动剂H-20大大减少了镇痛所需的吗啡剂量,从而显著减少阿片类药物相关的副作用。这种新的联合疗法可能为需要吗啡的慢性疼痛患者提供一种解决方案。
Enhanced Analgesic Efficacy and Reduced Side Effects of Morphine by Combination with PD-1 Agonist.
Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.g., hyperalgesia and tolerance) manifest during chronic administration, thus counteracting morphine analgesia. Investigators have sought methods to widen the therapeutic window of morphine in the management of chronic pain. Programmed cell death protein 1 (PD-1) is a recently validated analgesic target and is coexpressed with the mu opioid receptor (μOR) in dorsal root ganglion (DRG) sensory neurons. Here, we present evidence that PD-1 regulates the expression of μOR mRNA and influences μOR-mediated analgesia. Notably, the concomitant administration of PD-1 agonist H-20 greatly reduces the dosage of morphine needed for analgesia, thereby significantly decreasing opioid-related side effects. This new combination therapy may provide a solution for managing chronic pain in patients who require morphine.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research