基于物理准则的混合RANS/LES自适应策略的可行性及其在低雷诺数后向阶跃流中的初步测试

IF 2 3区 工程技术 Q3 MECHANICS
Martin David, Mahitosh Mehta, Rémi Manceau
{"title":"基于物理准则的混合RANS/LES自适应策略的可行性及其在低雷诺数后向阶跃流中的初步测试","authors":"Martin David,&nbsp;Mahitosh Mehta,&nbsp;Rémi Manceau","doi":"10.1007/s10494-024-00583-x","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid RANS/LES methods can produce more reliable results than RANS with a reasonable computational cost. Thus, they have the potential to become the next workhorse in the industry. However, in continuous approaches, whether or not they depend on the grid step explicitly, the ability of the model to switch to a well-resolved LES depends on the mesh generated by the user, such that the results are user-dependent. The present paper proposes a self-adaptive strategy, in which the RANS and LES zones are determined using physical criteria, in order to mitigate the user influence. Starting from an initial RANS computation, successive HTLES are carried out and the mesh is refined according to the criteria. To demonstrate the feasibility of this strategy, the method is applied to the backward-facing step case with the Hybrid Temporal Large Eddy Simulation (HTLES) approach, but is suitable for any other hybrid approach. The results obtained show that the method reaches a fixed point after only a few simulations and significantly improves the predictions when compared to RANS, with no intervention from the user. Even though the process is still a long way from being applicable to a wide range of turbulent flows, this paper is a demonstrator of the applicability of this self-adaptive strategy.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"49 - 79"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Feasibility of a Self-adaptive Strategy for Hybrid RANS/LES Based on Physical Criteria and its Initial Testing on Low Reynolds Number Backward-Facing Step Flow\",\"authors\":\"Martin David,&nbsp;Mahitosh Mehta,&nbsp;Rémi Manceau\",\"doi\":\"10.1007/s10494-024-00583-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid RANS/LES methods can produce more reliable results than RANS with a reasonable computational cost. Thus, they have the potential to become the next workhorse in the industry. However, in continuous approaches, whether or not they depend on the grid step explicitly, the ability of the model to switch to a well-resolved LES depends on the mesh generated by the user, such that the results are user-dependent. The present paper proposes a self-adaptive strategy, in which the RANS and LES zones are determined using physical criteria, in order to mitigate the user influence. Starting from an initial RANS computation, successive HTLES are carried out and the mesh is refined according to the criteria. To demonstrate the feasibility of this strategy, the method is applied to the backward-facing step case with the Hybrid Temporal Large Eddy Simulation (HTLES) approach, but is suitable for any other hybrid approach. The results obtained show that the method reaches a fixed point after only a few simulations and significantly improves the predictions when compared to RANS, with no intervention from the user. Even though the process is still a long way from being applicable to a wide range of turbulent flows, this paper is a demonstrator of the applicability of this self-adaptive strategy.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"114 1\",\"pages\":\"49 - 79\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00583-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00583-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

混合RANS/LES方法在计算成本合理的情况下,可以产生比RANS更可靠的结果。因此,它们有潜力成为该行业的下一个主力。然而,在连续方法中,无论它们是否明确地依赖于网格步骤,模型切换到高分辨率LES的能力取决于用户生成的网格,因此结果依赖于用户。本文提出了一种自适应策略,其中使用物理标准确定RANS和LES区域,以减轻用户的影响。从初始RANS计算开始,逐次进行HTLES,并根据准则进行网格细化。为了证明该策略的可行性,将该方法与混合时间大涡模拟(HTLES)方法一起应用于后向阶跃情况,但适用于任何其他混合方法。结果表明,该方法在不需要用户干预的情况下,只需进行几次模拟就可以达到一个不动点,并且与RANS相比显著提高了预测结果。尽管该过程距离适用于大范围的湍流还有很长的路要走,但本文证明了这种自适应策略的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Feasibility of a Self-adaptive Strategy for Hybrid RANS/LES Based on Physical Criteria and its Initial Testing on Low Reynolds Number Backward-Facing Step Flow

On the Feasibility of a Self-adaptive Strategy for Hybrid RANS/LES Based on Physical Criteria and its Initial Testing on Low Reynolds Number Backward-Facing Step Flow

Hybrid RANS/LES methods can produce more reliable results than RANS with a reasonable computational cost. Thus, they have the potential to become the next workhorse in the industry. However, in continuous approaches, whether or not they depend on the grid step explicitly, the ability of the model to switch to a well-resolved LES depends on the mesh generated by the user, such that the results are user-dependent. The present paper proposes a self-adaptive strategy, in which the RANS and LES zones are determined using physical criteria, in order to mitigate the user influence. Starting from an initial RANS computation, successive HTLES are carried out and the mesh is refined according to the criteria. To demonstrate the feasibility of this strategy, the method is applied to the backward-facing step case with the Hybrid Temporal Large Eddy Simulation (HTLES) approach, but is suitable for any other hybrid approach. The results obtained show that the method reaches a fixed point after only a few simulations and significantly improves the predictions when compared to RANS, with no intervention from the user. Even though the process is still a long way from being applicable to a wide range of turbulent flows, this paper is a demonstrator of the applicability of this self-adaptive strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信