{"title":"FTO通过n6 -甲基腺苷修饰GSTO1抑制T98G胶质母细胞瘤细胞增殖并诱导细胞凋亡","authors":"Jinjiang Dong, Jianhao Mao, Weihua Wu, Xiaoling Qian, Zhenfei Yu","doi":"10.1007/s11064-025-04334-w","DOIUrl":null,"url":null,"abstract":"<div><p>Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression. This study aimed to investigate the impact of FTO and GSTO1 on GBM progression and the regulation of FTO on m6A modification of GSTO1. T98G cell phenotypes including proliferation and apoptosis were analyzed by cell counting kit 8, colony formation assay, and flow cytometry. The regulation of m6A methylation mediated by FTO was evaluated by methylated RNA immunoprecipitation, RNA immunoprecipitation, and dual-luciferase reporter assay. The results showed that FTO expression was downregulated in GBM. Overexpression of FTO inhibited cell proliferation and facilitated apoptosis in vitro. Additionally, GSTO1 expression was elevated in GBM, and knockdown of GSTO1 suppressed cell proliferation and promoted apoptosis and oxidative stress. Moreover, FTO inhibited m6A methylation of GSTO1 and reduced the stability of GSTO1. Overexpression of GSTO1 abrogated T98G cellular processes mediated by FTO. The in vivo experiments showed that FTO inhibited tumor growth by downregulating GSTO1 expression. In conclusion, FTO decelerates GBM progression by inducing apoptosis through suppressing m6A methylation of GSTO1.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTO Suppresses Proliferation and Induces Apoptosis of T98G Glioblastoma Cells via N6-methyladenosine Modification of GSTO1\",\"authors\":\"Jinjiang Dong, Jianhao Mao, Weihua Wu, Xiaoling Qian, Zhenfei Yu\",\"doi\":\"10.1007/s11064-025-04334-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression. This study aimed to investigate the impact of FTO and GSTO1 on GBM progression and the regulation of FTO on m6A modification of GSTO1. T98G cell phenotypes including proliferation and apoptosis were analyzed by cell counting kit 8, colony formation assay, and flow cytometry. The regulation of m6A methylation mediated by FTO was evaluated by methylated RNA immunoprecipitation, RNA immunoprecipitation, and dual-luciferase reporter assay. The results showed that FTO expression was downregulated in GBM. Overexpression of FTO inhibited cell proliferation and facilitated apoptosis in vitro. Additionally, GSTO1 expression was elevated in GBM, and knockdown of GSTO1 suppressed cell proliferation and promoted apoptosis and oxidative stress. Moreover, FTO inhibited m6A methylation of GSTO1 and reduced the stability of GSTO1. Overexpression of GSTO1 abrogated T98G cellular processes mediated by FTO. The in vivo experiments showed that FTO inhibited tumor growth by downregulating GSTO1 expression. In conclusion, FTO decelerates GBM progression by inducing apoptosis through suppressing m6A methylation of GSTO1.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04334-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04334-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FTO Suppresses Proliferation and Induces Apoptosis of T98G Glioblastoma Cells via N6-methyladenosine Modification of GSTO1
Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression. This study aimed to investigate the impact of FTO and GSTO1 on GBM progression and the regulation of FTO on m6A modification of GSTO1. T98G cell phenotypes including proliferation and apoptosis were analyzed by cell counting kit 8, colony formation assay, and flow cytometry. The regulation of m6A methylation mediated by FTO was evaluated by methylated RNA immunoprecipitation, RNA immunoprecipitation, and dual-luciferase reporter assay. The results showed that FTO expression was downregulated in GBM. Overexpression of FTO inhibited cell proliferation and facilitated apoptosis in vitro. Additionally, GSTO1 expression was elevated in GBM, and knockdown of GSTO1 suppressed cell proliferation and promoted apoptosis and oxidative stress. Moreover, FTO inhibited m6A methylation of GSTO1 and reduced the stability of GSTO1. Overexpression of GSTO1 abrogated T98G cellular processes mediated by FTO. The in vivo experiments showed that FTO inhibited tumor growth by downregulating GSTO1 expression. In conclusion, FTO decelerates GBM progression by inducing apoptosis through suppressing m6A methylation of GSTO1.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.