趋化系统的非负轨迹精确可控性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Qiang Tao, Muming Zhang
{"title":"趋化系统的非负轨迹精确可控性","authors":"Qiang Tao,&nbsp;Muming Zhang","doi":"10.1007/s00245-025-10221-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the controllability for a Keller–Segel type chemotaxis model with singular sensitivity. Based on the Hopf–Cole transformation, a nonlinear parabolic system, which has first-order couplings, and the coupling coefficients are functions that depend on both time and space variables, is derived. Then, the controllability result is proved by a new global Carleman estimate for general coupled parabolic equations allowed to contain a convective term. Also, the global existence of nonnegative solution for the chemotaxis system is discussed.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Controllability to Nonnegative Trajectory for a Chemotaxis System\",\"authors\":\"Qiang Tao,&nbsp;Muming Zhang\",\"doi\":\"10.1007/s00245-025-10221-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the controllability for a Keller–Segel type chemotaxis model with singular sensitivity. Based on the Hopf–Cole transformation, a nonlinear parabolic system, which has first-order couplings, and the coupling coefficients are functions that depend on both time and space variables, is derived. Then, the controllability result is proved by a new global Carleman estimate for general coupled parabolic equations allowed to contain a convective term. Also, the global existence of nonnegative solution for the chemotaxis system is discussed.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10221-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10221-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有奇异灵敏度的Keller-Segel型趋化性模型的可控性。基于Hopf-Cole变换,导出了一类具有一阶耦合且耦合系数是依赖于时间和空间变量的函数的非线性抛物型系统。然后,用一种新的全局Carleman估计证明了含对流项的一般耦合抛物方程的可控性结果。同时,讨论了趋化系统的非负解的整体存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Controllability to Nonnegative Trajectory for a Chemotaxis System

This paper studies the controllability for a Keller–Segel type chemotaxis model with singular sensitivity. Based on the Hopf–Cole transformation, a nonlinear parabolic system, which has first-order couplings, and the coupling coefficients are functions that depend on both time and space variables, is derived. Then, the controllability result is proved by a new global Carleman estimate for general coupled parabolic equations allowed to contain a convective term. Also, the global existence of nonnegative solution for the chemotaxis system is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信