类史瓦西黑洞解弱场状态下粒子偏转和EHT约束下阴影尺寸的解析推广

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Reggie C. Pantig
{"title":"类史瓦西黑洞解弱场状态下粒子偏转和EHT约束下阴影尺寸的解析推广","authors":"Reggie C. Pantig","doi":"10.1140/epjc/s10052-025-13766-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an analytic generalization of the weak field deflection angle (WDA) is derived by utilizing the current non-asymptotically flat generalization of the Gauss–Bonnet theorem. The derived formula is valid for any Schwarzschild-like spacetime, which deviates from the classical Schwarzschild case through some constant parameters. This work provided four examples, including Schwarzschild-like solutions in the context of Bumblebee gravity theory and the Kalb–Ramond framework, as well as one example from a black hole surrounded by soliton dark matter. These examples explore distinct mechanisms of Lorentz symmetry breaking, with results that are either new or in agreement with existing literature. The WDA formula provided a simple calculation, where approximations based on some conditions can be done directly on it, skipping the preliminary steps. For the shadow size analysis, it is shown how it depends solely on the parameter associated with the metric coefficient in the time coordinate. A general formula for the constrained parameter is also derived based on the Event Horizon Collaboration (EHT) observational results. Finally, the work realized further possible generalizations on other black hole models, such as RN-like, dS/AdS-like black hole solutions, and even black hole solutions in higher dimensions.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13766-1.pdf","citationCount":"0","resultStr":"{\"title\":\"On the analytic generalization of particle deflection in the weak field regime and shadow size in light of EHT constraints for Schwarzschild-like black hole solutions\",\"authors\":\"Reggie C. Pantig\",\"doi\":\"10.1140/epjc/s10052-025-13766-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, an analytic generalization of the weak field deflection angle (WDA) is derived by utilizing the current non-asymptotically flat generalization of the Gauss–Bonnet theorem. The derived formula is valid for any Schwarzschild-like spacetime, which deviates from the classical Schwarzschild case through some constant parameters. This work provided four examples, including Schwarzschild-like solutions in the context of Bumblebee gravity theory and the Kalb–Ramond framework, as well as one example from a black hole surrounded by soliton dark matter. These examples explore distinct mechanisms of Lorentz symmetry breaking, with results that are either new or in agreement with existing literature. The WDA formula provided a simple calculation, where approximations based on some conditions can be done directly on it, skipping the preliminary steps. For the shadow size analysis, it is shown how it depends solely on the parameter associated with the metric coefficient in the time coordinate. A general formula for the constrained parameter is also derived based on the Event Horizon Collaboration (EHT) observational results. Finally, the work realized further possible generalizations on other black hole models, such as RN-like, dS/AdS-like black hole solutions, and even black hole solutions in higher dimensions.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13766-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-13766-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13766-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用高斯-博内定理的非渐近平面推广,导出了弱场偏转角的解析推广。导出的公式适用于任何类史瓦西时空,它通过一些常数参数偏离经典史瓦西情况。这项工作提供了四个例子,包括大黄蜂引力理论背景下的类史瓦西解和Kalb-Ramond框架,以及一个被孤子暗物质包围的黑洞的例子。这些例子探索了洛伦兹对称破缺的不同机制,其结果要么是新的,要么与现有文献一致。WDA公式提供了一个简单的计算,基于某些条件的近似值可以直接在其上进行,跳过了初始步骤。对于阴影大小分析,它显示了它如何仅取决于与时间坐标中的度量系数相关的参数。基于事件视界协作(EHT)的观测结果,导出了约束参数的一般公式。最后,本文实现了对其他黑洞模型的进一步推广,如类rn、类dS/ ads黑洞解,甚至高维黑洞解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analytic generalization of particle deflection in the weak field regime and shadow size in light of EHT constraints for Schwarzschild-like black hole solutions

In this paper, an analytic generalization of the weak field deflection angle (WDA) is derived by utilizing the current non-asymptotically flat generalization of the Gauss–Bonnet theorem. The derived formula is valid for any Schwarzschild-like spacetime, which deviates from the classical Schwarzschild case through some constant parameters. This work provided four examples, including Schwarzschild-like solutions in the context of Bumblebee gravity theory and the Kalb–Ramond framework, as well as one example from a black hole surrounded by soliton dark matter. These examples explore distinct mechanisms of Lorentz symmetry breaking, with results that are either new or in agreement with existing literature. The WDA formula provided a simple calculation, where approximations based on some conditions can be done directly on it, skipping the preliminary steps. For the shadow size analysis, it is shown how it depends solely on the parameter associated with the metric coefficient in the time coordinate. A general formula for the constrained parameter is also derived based on the Event Horizon Collaboration (EHT) observational results. Finally, the work realized further possible generalizations on other black hole models, such as RN-like, dS/AdS-like black hole solutions, and even black hole solutions in higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信