局部到全局平面的欧几里得最大匹配

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ahmad Biniaz, Anil Maheshwari, Michiel Smid
{"title":"局部到全局平面的欧几里得最大匹配","authors":"Ahmad Biniaz,&nbsp;Anil Maheshwari,&nbsp;Michiel Smid","doi":"10.1007/s00453-024-01279-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>M</i> be a perfect matching on a set of points in the plane where every edge is a line segment between two points. We say that <i>M</i> is <i>globally maximum</i> if it is a maximum-length matching on all points. We say that <i>M</i> is <i>k</i>-<i>local maximum</i> if for any subset <span>\\(M'=\\{a_1b_1,\\dots ,a_kb_k\\}\\)</span> of <i>k</i> edges of <i>M</i> it holds that <span>\\(M'\\)</span> is a maximum-length matching on points <span>\\(\\{a_1,b_1,\\dots ,a_k,b_k\\}\\)</span>. We show that local maximum matchings are good approximations of global ones. Let <span>\\(\\mu _k\\)</span> be the infimum ratio of the length of any <i>k</i>-local maximum matching to the length of any global maximum matching, over all finite point sets in the Euclidean plane. It is known that <span>\\(\\mu _k\\geqslant \\frac{k-1}{k}\\)</span> for any <span>\\(k\\geqslant 2\\)</span>. We show the following improved bounds for <span>\\(k\\in \\{2,3\\}\\)</span>: <span>\\(\\sqrt{3/7}\\leqslant \\mu _2&lt; 0.93 \\)</span> and <span>\\(\\sqrt{3}/2\\leqslant \\mu _3&lt; 0.98\\)</span>. We also show that every pairwise crossing matching is unique and it is globally maximum. Towards our proof of the lower bound for <span>\\(\\mu _2\\)</span> we show the following result which is of independent interest: If we increase the radii of pairwise intersecting disks by factor <span>\\(2/\\sqrt{3}\\)</span>, then the resulting disks have a common intersection.\n</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 1","pages":"132 - 147"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclidean Maximum Matchings in the Plane—Local to Global\",\"authors\":\"Ahmad Biniaz,&nbsp;Anil Maheshwari,&nbsp;Michiel Smid\",\"doi\":\"10.1007/s00453-024-01279-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>M</i> be a perfect matching on a set of points in the plane where every edge is a line segment between two points. We say that <i>M</i> is <i>globally maximum</i> if it is a maximum-length matching on all points. We say that <i>M</i> is <i>k</i>-<i>local maximum</i> if for any subset <span>\\\\(M'=\\\\{a_1b_1,\\\\dots ,a_kb_k\\\\}\\\\)</span> of <i>k</i> edges of <i>M</i> it holds that <span>\\\\(M'\\\\)</span> is a maximum-length matching on points <span>\\\\(\\\\{a_1,b_1,\\\\dots ,a_k,b_k\\\\}\\\\)</span>. We show that local maximum matchings are good approximations of global ones. Let <span>\\\\(\\\\mu _k\\\\)</span> be the infimum ratio of the length of any <i>k</i>-local maximum matching to the length of any global maximum matching, over all finite point sets in the Euclidean plane. It is known that <span>\\\\(\\\\mu _k\\\\geqslant \\\\frac{k-1}{k}\\\\)</span> for any <span>\\\\(k\\\\geqslant 2\\\\)</span>. We show the following improved bounds for <span>\\\\(k\\\\in \\\\{2,3\\\\}\\\\)</span>: <span>\\\\(\\\\sqrt{3/7}\\\\leqslant \\\\mu _2&lt; 0.93 \\\\)</span> and <span>\\\\(\\\\sqrt{3}/2\\\\leqslant \\\\mu _3&lt; 0.98\\\\)</span>. We also show that every pairwise crossing matching is unique and it is globally maximum. Towards our proof of the lower bound for <span>\\\\(\\\\mu _2\\\\)</span> we show the following result which is of independent interest: If we increase the radii of pairwise intersecting disks by factor <span>\\\\(2/\\\\sqrt{3}\\\\)</span>, then the resulting disks have a common intersection.\\n</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"87 1\",\"pages\":\"132 - 147\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-024-01279-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01279-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

设M是平面上一组点的完美匹配其中每条边都是两点之间的线段。如果M在所有点上都是最大长度匹配,我们说M是全局最大的。我们说M是k局部最大值,如果对于M的k条边的任意子集\(M'=\{a_1b_1,\dots ,a_kb_k\}\),它保持\(M'\)是点\(\{a_1,b_1,\dots ,a_k,b_k\}\)上的最大长度匹配。我们证明了局部极大匹配是全局极大匹配的良好逼近。设\(\mu _k\)为欧几里德平面上所有有限点集上,任意k-局部最大匹配长度与任意全局最大匹配长度的最小比值。已知\(\mu _k\geqslant \frac{k-1}{k}\)对于任何\(k\geqslant 2\)。我们展示了以下改进的\(k\in \{2,3\}\)边界:\(\sqrt{3/7}\leqslant \mu _2< 0.93 \)和\(\sqrt{3}/2\leqslant \mu _3< 0.98\)。我们还证明了每对交叉匹配都是唯一的,并且是全局最大的。为了证明\(\mu _2\)的下界,我们展示了以下结果,这是一个独立的兴趣:如果我们将成对相交的磁盘的半径增加\(2/\sqrt{3}\)倍,那么得到的磁盘有一个公共相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Maximum Matchings in the Plane—Local to Global

Let M be a perfect matching on a set of points in the plane where every edge is a line segment between two points. We say that M is globally maximum if it is a maximum-length matching on all points. We say that M is k-local maximum if for any subset \(M'=\{a_1b_1,\dots ,a_kb_k\}\) of k edges of M it holds that \(M'\) is a maximum-length matching on points \(\{a_1,b_1,\dots ,a_k,b_k\}\). We show that local maximum matchings are good approximations of global ones. Let \(\mu _k\) be the infimum ratio of the length of any k-local maximum matching to the length of any global maximum matching, over all finite point sets in the Euclidean plane. It is known that \(\mu _k\geqslant \frac{k-1}{k}\) for any \(k\geqslant 2\). We show the following improved bounds for \(k\in \{2,3\}\): \(\sqrt{3/7}\leqslant \mu _2< 0.93 \) and \(\sqrt{3}/2\leqslant \mu _3< 0.98\). We also show that every pairwise crossing matching is unique and it is globally maximum. Towards our proof of the lower bound for \(\mu _2\) we show the following result which is of independent interest: If we increase the radii of pairwise intersecting disks by factor \(2/\sqrt{3}\), then the resulting disks have a common intersection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信