{"title":"obci -代数的同态","authors":"Eunsuk Yang, Eun Hwan Roh, Young Bae Jun","doi":"10.1007/s13370-025-01249-1","DOIUrl":null,"url":null,"abstract":"<div><p>Recently Yang–Roh–Jun introduced the notion of OBCI-algebras as a generalization of BCI-algebras. Here we introduce homomorphisms and kernels of OBCI-algebras and investigate related properties. More exactly, we first define the homomorphism and kernel of OBCI-algebras. We then investigate properties related to (ordered) subalgebras, (ordered) filters and direct products of OBCI-algebras.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homomorphisms of OBCI-algebras\",\"authors\":\"Eunsuk Yang, Eun Hwan Roh, Young Bae Jun\",\"doi\":\"10.1007/s13370-025-01249-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently Yang–Roh–Jun introduced the notion of OBCI-algebras as a generalization of BCI-algebras. Here we introduce homomorphisms and kernels of OBCI-algebras and investigate related properties. More exactly, we first define the homomorphism and kernel of OBCI-algebras. We then investigate properties related to (ordered) subalgebras, (ordered) filters and direct products of OBCI-algebras.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01249-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01249-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Recently Yang–Roh–Jun introduced the notion of OBCI-algebras as a generalization of BCI-algebras. Here we introduce homomorphisms and kernels of OBCI-algebras and investigate related properties. More exactly, we first define the homomorphism and kernel of OBCI-algebras. We then investigate properties related to (ordered) subalgebras, (ordered) filters and direct products of OBCI-algebras.