与Toeplitz算子相关的定向短时傅里叶变换及其应用

IF 0.9 Q2 MATHEMATICS
Saifallah Ghobber, Hatem Mejjaoli, Slim Omri
{"title":"与Toeplitz算子相关的定向短时傅里叶变换及其应用","authors":"Saifallah Ghobber,&nbsp;Hatem Mejjaoli,&nbsp;Slim Omri","doi":"10.1007/s13370-025-01271-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten–von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the <span>\\(L^{p}\\)</span>-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz operators associated with the directional short-time Fourier transform and applications\",\"authors\":\"Saifallah Ghobber,&nbsp;Hatem Mejjaoli,&nbsp;Slim Omri\",\"doi\":\"10.1007/s13370-025-01271-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten–von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the <span>\\\\(L^{p}\\\\)</span>-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01271-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01271-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了定向短时傅里叶变换的夏皮罗测不准原理。接下来,我们引入与定向短时傅里叶变换相关的Toeplitz算子的概念。特别地,我们研究了这类算子的迹类性质,并证明了它们属于schaten - von Neumann类。接下来,我们研究了这些Toeplitz算子在\(L^{p}\) -空间中的有界性和紧性。最后,我们介绍并研究了与这些Toeplitz算子相关的广义谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toeplitz operators associated with the directional short-time Fourier transform and applications

In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten–von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the \(L^{p}\)-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信