Caizhen Shi, Bingbing Wang, Tianyu Zhai, Can Zhang, Jiarui Ma, Yanjie Guo, Yanling Yang, Chen Chen, Jianzhong Gao, Lin Zhao
{"title":"探索泛素化在脊髓损伤治疗中的作用:多方面的目标和有前途的策略","authors":"Caizhen Shi, Bingbing Wang, Tianyu Zhai, Can Zhang, Jiarui Ma, Yanjie Guo, Yanling Yang, Chen Chen, Jianzhong Gao, Lin Zhao","doi":"10.1007/s11064-025-04332-y","DOIUrl":null,"url":null,"abstract":"<div><p>Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood–spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies\",\"authors\":\"Caizhen Shi, Bingbing Wang, Tianyu Zhai, Can Zhang, Jiarui Ma, Yanjie Guo, Yanling Yang, Chen Chen, Jianzhong Gao, Lin Zhao\",\"doi\":\"10.1007/s11064-025-04332-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood–spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04332-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04332-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies
Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood–spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.