基于联邦卡尔曼滤波和离散广义比例积分观测器的鲁棒传感器融合

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
Edwards Ernesto Sánchez Ramírez, Alberto Jorge Rosales Silva, Ponciano Jorge Escamilla Ambrosio, Floriberto Ortiz Rodríguez, Rogelio Antonio Alfaro Flores, Jean Marie Vianney Kinani
{"title":"基于联邦卡尔曼滤波和离散广义比例积分观测器的鲁棒传感器融合","authors":"Edwards Ernesto Sánchez Ramírez,&nbsp;Alberto Jorge Rosales Silva,&nbsp;Ponciano Jorge Escamilla Ambrosio,&nbsp;Floriberto Ortiz Rodríguez,&nbsp;Rogelio Antonio Alfaro Flores,&nbsp;Jean Marie Vianney Kinani","doi":"10.3103/S0146411624701104","DOIUrl":null,"url":null,"abstract":"<p>The federated Kalman filter has been an optimal solution when working with distributed systems providing a global estimation without affecting local filters. Several problems including nonlinearities and high-amplitude noise levels have been tackled to improve the performance of global estimations. In this work, we propose a robust federated Kalman filter composed of a set of discrete generalized-proportional-integral (GPI) observers. We demonstrate how this algorithm yields high-precision estimations by using sensor fusion and active disturbance rejection (ADR) features. The proposed method was compared with other state-of-the-art algorithms where ours had the best performance.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 6","pages":"630 - 641"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogust Sensor Fusion Using Federated Kalman Filter and Discrete Generalized-Proportional-Integral Observers\",\"authors\":\"Edwards Ernesto Sánchez Ramírez,&nbsp;Alberto Jorge Rosales Silva,&nbsp;Ponciano Jorge Escamilla Ambrosio,&nbsp;Floriberto Ortiz Rodríguez,&nbsp;Rogelio Antonio Alfaro Flores,&nbsp;Jean Marie Vianney Kinani\",\"doi\":\"10.3103/S0146411624701104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The federated Kalman filter has been an optimal solution when working with distributed systems providing a global estimation without affecting local filters. Several problems including nonlinearities and high-amplitude noise levels have been tackled to improve the performance of global estimations. In this work, we propose a robust federated Kalman filter composed of a set of discrete generalized-proportional-integral (GPI) observers. We demonstrate how this algorithm yields high-precision estimations by using sensor fusion and active disturbance rejection (ADR) features. The proposed method was compared with other state-of-the-art algorithms where ours had the best performance.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 6\",\"pages\":\"630 - 641\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624701104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624701104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在处理分布式系统时,联邦卡尔曼滤波器是提供全局估计而不影响局部滤波器的最佳解决方案。为了提高全局估计的性能,我们解决了非线性和高振幅噪声等问题。在这项工作中,我们提出了一个由一组离散广义比例积分(GPI)观测器组成的鲁棒联邦卡尔曼滤波器。我们演示了该算法如何通过使用传感器融合和自扰抑制(ADR)特征产生高精度估计。将所提出的方法与其他最先进的算法进行了比较,其中我们的算法具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rogust Sensor Fusion Using Federated Kalman Filter and Discrete Generalized-Proportional-Integral Observers

Rogust Sensor Fusion Using Federated Kalman Filter and Discrete Generalized-Proportional-Integral Observers

The federated Kalman filter has been an optimal solution when working with distributed systems providing a global estimation without affecting local filters. Several problems including nonlinearities and high-amplitude noise levels have been tackled to improve the performance of global estimations. In this work, we propose a robust federated Kalman filter composed of a set of discrete generalized-proportional-integral (GPI) observers. We demonstrate how this algorithm yields high-precision estimations by using sensor fusion and active disturbance rejection (ADR) features. The proposed method was compared with other state-of-the-art algorithms where ours had the best performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信