一种用于时空预测学习的掩码自编码器网络

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fengzhen Sun, Weidong Jin
{"title":"一种用于时空预测学习的掩码自编码器网络","authors":"Fengzhen Sun,&nbsp;Weidong Jin","doi":"10.1007/s10489-024-06214-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is about predictive learning, which is generating future frames given previous images. Suffering from the vanishing gradient problem, existing methods based on RNN and CNN can’t capture the long-term dependencies effectively. To overcome the above dilemma, we present MastNet a spatiotemporal framework for long-term predictive learning. In this paper, we design a Transformer-based encoder-decoder with hierarchical structure. As for the transformer block, we adopt the spatiotemporal window based self-attention to reduce computational complexity and the spatiotemporal shifted window partitioning approach. More importantly, we build a spatiotemporal autoencoder by the random clip mask strategy, which leads to better feature mining for temporal dependencies and spatial correlations. Furthermore, we insert an auxiliary prediction head, which can help our model generate higher-quality frames. Experimental results show that the proposed MastNet achieves the best results in accuracy and long-term prediction on two spatiotemporal datasets compared with the state-of-the-art models.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A masked autoencoder network for spatiotemporal predictive learning\",\"authors\":\"Fengzhen Sun,&nbsp;Weidong Jin\",\"doi\":\"10.1007/s10489-024-06214-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is about predictive learning, which is generating future frames given previous images. Suffering from the vanishing gradient problem, existing methods based on RNN and CNN can’t capture the long-term dependencies effectively. To overcome the above dilemma, we present MastNet a spatiotemporal framework for long-term predictive learning. In this paper, we design a Transformer-based encoder-decoder with hierarchical structure. As for the transformer block, we adopt the spatiotemporal window based self-attention to reduce computational complexity and the spatiotemporal shifted window partitioning approach. More importantly, we build a spatiotemporal autoencoder by the random clip mask strategy, which leads to better feature mining for temporal dependencies and spatial correlations. Furthermore, we insert an auxiliary prediction head, which can help our model generate higher-quality frames. Experimental results show that the proposed MastNet achieves the best results in accuracy and long-term prediction on two spatiotemporal datasets compared with the state-of-the-art models.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06214-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06214-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这篇论文是关于预测学习的,它是根据之前的图像生成未来的帧。由于存在梯度消失的问题,现有的基于RNN和CNN的方法不能有效地捕获长期依赖关系。为了克服上述困境,我们提出了一个用于长期预测学习的时空框架。本文设计了一种基于变压器的分层结构编解码器。对于变压器块,我们采用了基于时空窗的自关注来降低计算复杂度,并采用了时空移窗划分方法。更重要的是,我们通过随机剪辑掩码策略构建了一个时空自编码器,从而更好地挖掘了时间依赖性和空间相关性的特征。此外,我们还插入了一个辅助预测头,这可以帮助我们的模型生成更高质量的帧。实验结果表明,在两个时空数据集上,与现有模型相比,所提出的MastNet在精度和长期预测方面取得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A masked autoencoder network for spatiotemporal predictive learning

A masked autoencoder network for spatiotemporal predictive learning

This paper is about predictive learning, which is generating future frames given previous images. Suffering from the vanishing gradient problem, existing methods based on RNN and CNN can’t capture the long-term dependencies effectively. To overcome the above dilemma, we present MastNet a spatiotemporal framework for long-term predictive learning. In this paper, we design a Transformer-based encoder-decoder with hierarchical structure. As for the transformer block, we adopt the spatiotemporal window based self-attention to reduce computational complexity and the spatiotemporal shifted window partitioning approach. More importantly, we build a spatiotemporal autoencoder by the random clip mask strategy, which leads to better feature mining for temporal dependencies and spatial correlations. Furthermore, we insert an auxiliary prediction head, which can help our model generate higher-quality frames. Experimental results show that the proposed MastNet achieves the best results in accuracy and long-term prediction on two spatiotemporal datasets compared with the state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信