关于哈密顿系统中的扩散机制

IF 0.6 4区 数学 Q3 MATHEMATICS
Valery Kozlov
{"title":"关于哈密顿系统中的扩散机制","authors":"Valery Kozlov","doi":"10.1134/S0016266324040026","DOIUrl":null,"url":null,"abstract":"<p> The diffusion mechanism in Hamiltonian systems, close to completely integrable, is usually connected with the existence of the so-called “transition chains”. In this case slow diffusion occurs in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, lower-dimensional invariant tori) of the perturbed system. In this note we discuss another diffusion mechanism that uses destruction of invariant tori of the unperturbed system with an almost resonant set of frequencies. We demonstrate this mechanism on a particular isoenergetically nondegenerate Hamiltonian system with three degrees of freedom. The same phenomenon also occurs for general higher-dimensional Hamiltonian systems. Drift of slow variables is shown using analysis of integrals of quasi-periodic functions of the time variable (possibly unbounded) with zero mean value. In addition, the proof uses the conditions of topological transitivity for cylindrical cascades. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 4","pages":"362 - 370"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diffusion Mechanism in Hamiltonian Systems\",\"authors\":\"Valery Kozlov\",\"doi\":\"10.1134/S0016266324040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The diffusion mechanism in Hamiltonian systems, close to completely integrable, is usually connected with the existence of the so-called “transition chains”. In this case slow diffusion occurs in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, lower-dimensional invariant tori) of the perturbed system. In this note we discuss another diffusion mechanism that uses destruction of invariant tori of the unperturbed system with an almost resonant set of frequencies. We demonstrate this mechanism on a particular isoenergetically nondegenerate Hamiltonian system with three degrees of freedom. The same phenomenon also occurs for general higher-dimensional Hamiltonian systems. Drift of slow variables is shown using analysis of integrals of quasi-periodic functions of the time variable (possibly unbounded) with zero mean value. In addition, the proof uses the conditions of topological transitivity for cylindrical cascades. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 4\",\"pages\":\"362 - 370\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324040026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324040026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在接近完全可积的哈密顿系统中,扩散机制通常与所谓的“过渡链”的存在有关。在这种情况下,缓慢扩散发生在摄动系统的双曲周期解(或更一般地说,低维不变环面)相交分离的邻域中。在本文中,我们讨论了另一种扩散机制,该机制利用了具有几乎谐振频率集的无扰动系统的不变环面破坏。我们在一个特定的三自由度等能非简并哈密顿系统上证明了这一机制。同样的现象也发生在一般的高维哈密顿系统中。通过分析时间变量(可能无界)的准周期函数的零平均值的积分,说明了慢变量的漂移。此外,还利用圆柱级联的拓扑传递性条件进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diffusion Mechanism in Hamiltonian Systems

The diffusion mechanism in Hamiltonian systems, close to completely integrable, is usually connected with the existence of the so-called “transition chains”. In this case slow diffusion occurs in a neighborhood of intersecting separatrices of hyperbolic periodic solutions (or, more generally, lower-dimensional invariant tori) of the perturbed system. In this note we discuss another diffusion mechanism that uses destruction of invariant tori of the unperturbed system with an almost resonant set of frequencies. We demonstrate this mechanism on a particular isoenergetically nondegenerate Hamiltonian system with three degrees of freedom. The same phenomenon also occurs for general higher-dimensional Hamiltonian systems. Drift of slow variables is shown using analysis of integrals of quasi-periodic functions of the time variable (possibly unbounded) with zero mean value. In addition, the proof uses the conditions of topological transitivity for cylindrical cascades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信