日冕等离子体大尺度电加热Сurrents:太阳日冕在耀斑之前和耀斑事件期间和之后的安静时间间隔内的高温结构

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Yu. A. Fursyak
{"title":"日冕等离子体大尺度电加热Сurrents:太阳日冕在耀斑之前和耀斑事件期间和之后的安静时间间隔内的高温结构","authors":"Yu. A. Fursyak","doi":"10.1134/S0016793224700282","DOIUrl":null,"url":null,"abstract":"<p>The paper studies the dynamics of high-temperature structures (with a temperature of <i>T</i> ≥ 10 MK) in the corona above active regions (ARs) in quiet temporal intervals, before solar flares of high X-ray classes and during and after individual flare events, and determines the role of electric currents in heating the coronal plasma. In the study, we used data from the Solar Dynamics Observatory (SDO) spacecraft: magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument (used to detect and calculate the magnitude of large-scale electric current) and photoheliograms of the solar corona in ultraviolet radiation 94, 131, 171, 193, 211, and 335 Å channels of the Atmospheric Imaging Assembly (AIA/SDO) instrument (used to construct maps of temperature distribution in the corona above the AR, detect high-temperature structures, and study their evolution). The objects of the study were ARs NOAA 12 192 (October 2014) and 12 371 (June 2015) of the 24th solar activity cycle, which have high absolute values of large-scale electric current. The following results were obtained: (1) The discovered high-temperature structures represent a channel of large-scale electric current at coronal heights. (2) High-temperature structures in the corona above the studied ARs exist over a long (several days) time interval, which indicates the presence of a constant source of plasma heating; the temperature of the structures, the area they occupy, and their spatial orientation change over time. (3) High-temperature structures in the corona consist of individual elements with a cross section of ~10<sup>8</sup> cm. (4) Several hours before the X-ray flares of classes M and X datected in the studied ARs during their monitoring time, a significant decrease in the area occupied by high-temperature structures was observed, and in some cases, a decrease in temperature to 3–5 MK, which indicates a change in the physical conditions in the corona before powerful flares.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1189 - 1196"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coronal Plasma Heating by Large-Scale Electric Сurrents: High-Temperature Structures in the Sun’s Corona during Quiet Temporal Intervals before Flares and during and after Flare Events\",\"authors\":\"Yu. A. Fursyak\",\"doi\":\"10.1134/S0016793224700282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper studies the dynamics of high-temperature structures (with a temperature of <i>T</i> ≥ 10 MK) in the corona above active regions (ARs) in quiet temporal intervals, before solar flares of high X-ray classes and during and after individual flare events, and determines the role of electric currents in heating the coronal plasma. In the study, we used data from the Solar Dynamics Observatory (SDO) spacecraft: magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument (used to detect and calculate the magnitude of large-scale electric current) and photoheliograms of the solar corona in ultraviolet radiation 94, 131, 171, 193, 211, and 335 Å channels of the Atmospheric Imaging Assembly (AIA/SDO) instrument (used to construct maps of temperature distribution in the corona above the AR, detect high-temperature structures, and study their evolution). The objects of the study were ARs NOAA 12 192 (October 2014) and 12 371 (June 2015) of the 24th solar activity cycle, which have high absolute values of large-scale electric current. The following results were obtained: (1) The discovered high-temperature structures represent a channel of large-scale electric current at coronal heights. (2) High-temperature structures in the corona above the studied ARs exist over a long (several days) time interval, which indicates the presence of a constant source of plasma heating; the temperature of the structures, the area they occupy, and their spatial orientation change over time. (3) High-temperature structures in the corona consist of individual elements with a cross section of ~10<sup>8</sup> cm. (4) Several hours before the X-ray flares of classes M and X datected in the studied ARs during their monitoring time, a significant decrease in the area occupied by high-temperature structures was observed, and in some cases, a decrease in temperature to 3–5 MK, which indicates a change in the physical conditions in the corona before powerful flares.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 7\",\"pages\":\"1189 - 1196\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224700282\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700282","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在安静的时间间隔、高x射线等级太阳耀斑发生前和单个耀斑发生期间和之后,日冕活动区域(ARs)以上的高温结构(温度T≥10 MK)的动力学,并确定了电流在加热日冕等离子体中的作用。在这项研究中,我们使用了来自太阳动力学天文台(SDO)航天器的数据:由日震和磁成像仪(HMI)获得的磁图(用于检测和计算大尺度电流的大小)和大气成像组件(AIA/SDO)仪器在紫外线辐射94、131、171、193、211和335 Å通道下的日冕光谱图(用于构建AR上方日冕温度分布图,探测高温结构并研究其演变)。研究对象为第24太阳活动周期的ARs NOAA 12 192(2014年10月)和12 371(2015年6月),它们具有较高的大尺度电流绝对值。结果表明:(1)发现的高温结构代表了日冕高度处的大尺度电流通道。(2)研究区上方日冕的高温结构存在较长(数天)的时间间隔,表明存在恒定的等离子体加热源;这些结构的温度、它们所占据的面积和它们的空间方向都随着时间而变化。(3)日冕内的高温结构由单个元素组成,截面约为108 cm。(4)在观测时间内,在探测到M类和X类X射线耀斑的前几个小时,观测到高温结构占据的区域明显减少,有的温度下降到3 ~ 5 MK,这表明在强耀斑出现之前,日冕的物理条件发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coronal Plasma Heating by Large-Scale Electric Сurrents: High-Temperature Structures in the Sun’s Corona during Quiet Temporal Intervals before Flares and during and after Flare Events

Coronal Plasma Heating by Large-Scale Electric Сurrents: High-Temperature Structures in the Sun’s Corona during Quiet Temporal Intervals before Flares and during and after Flare Events

The paper studies the dynamics of high-temperature structures (with a temperature of T ≥ 10 MK) in the corona above active regions (ARs) in quiet temporal intervals, before solar flares of high X-ray classes and during and after individual flare events, and determines the role of electric currents in heating the coronal plasma. In the study, we used data from the Solar Dynamics Observatory (SDO) spacecraft: magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument (used to detect and calculate the magnitude of large-scale electric current) and photoheliograms of the solar corona in ultraviolet radiation 94, 131, 171, 193, 211, and 335 Å channels of the Atmospheric Imaging Assembly (AIA/SDO) instrument (used to construct maps of temperature distribution in the corona above the AR, detect high-temperature structures, and study their evolution). The objects of the study were ARs NOAA 12 192 (October 2014) and 12 371 (June 2015) of the 24th solar activity cycle, which have high absolute values of large-scale electric current. The following results were obtained: (1) The discovered high-temperature structures represent a channel of large-scale electric current at coronal heights. (2) High-temperature structures in the corona above the studied ARs exist over a long (several days) time interval, which indicates the presence of a constant source of plasma heating; the temperature of the structures, the area they occupy, and their spatial orientation change over time. (3) High-temperature structures in the corona consist of individual elements with a cross section of ~108 cm. (4) Several hours before the X-ray flares of classes M and X datected in the studied ARs during their monitoring time, a significant decrease in the area occupied by high-temperature structures was observed, and in some cases, a decrease in temperature to 3–5 MK, which indicates a change in the physical conditions in the corona before powerful flares.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信