El Niño与太阳活动:神经网络上的格兰杰因果关系

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
D. M. Volobuev, N. G. Makarenko, I. S. Knyazeva
{"title":"El Niño与太阳活动:神经网络上的格兰杰因果关系","authors":"D. M. Volobuev,&nbsp;N. G. Makarenko,&nbsp;I. S. Knyazeva","doi":"10.1134/S0016793224700233","DOIUrl":null,"url":null,"abstract":"<p>El Niño (ENSO), a consequence of changes in ocean circulation patterns, has a significant impact on the global climate and associated economic activity. According to our hypothesis, in addition to internal climatic factors, the ocean circulation regime can be controlled by small changes in total solar irradiation (TSI) occurring in the 11-year solar activity cycle. In this case, positive feedback with a gain of about 10 is possible in near-equatorial regions. In this paper, we attempt to predict monthly averages of an index describing ENSO using TSI as an additional predictor. For prediction, we train a recurrent neural network with a long- and short-term memory (LSTM) unit on ENSO alone and with the addition of TSI. As a result, we find that the ENSO training error is reduced when TSI is added as a predictor. Our result indicates the possibility of using TSI as one of the predictors in constructing modern nonlinear predictive global climate models.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1157 - 1162"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"El Niño and Solar Activity: Granger Causality on a Neural Network\",\"authors\":\"D. M. Volobuev,&nbsp;N. G. Makarenko,&nbsp;I. S. Knyazeva\",\"doi\":\"10.1134/S0016793224700233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>El Niño (ENSO), a consequence of changes in ocean circulation patterns, has a significant impact on the global climate and associated economic activity. According to our hypothesis, in addition to internal climatic factors, the ocean circulation regime can be controlled by small changes in total solar irradiation (TSI) occurring in the 11-year solar activity cycle. In this case, positive feedback with a gain of about 10 is possible in near-equatorial regions. In this paper, we attempt to predict monthly averages of an index describing ENSO using TSI as an additional predictor. For prediction, we train a recurrent neural network with a long- and short-term memory (LSTM) unit on ENSO alone and with the addition of TSI. As a result, we find that the ENSO training error is reduced when TSI is added as a predictor. Our result indicates the possibility of using TSI as one of the predictors in constructing modern nonlinear predictive global climate models.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 7\",\"pages\":\"1157 - 1162\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224700233\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700233","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

厄尔尼诺Niño (ENSO)是海洋环流模式变化的结果,对全球气候和相关的经济活动产生重大影响。根据我们的假设,除了内部气候因素外,海洋环流还可以由11年太阳活动周期中发生的太阳总辐射(TSI)的微小变化来控制。在这种情况下,增益约为10的正反馈在近赤道地区是可能的。在本文中,我们尝试使用TSI作为额外的预测因子来预测描述ENSO的指数的月平均值。为了进行预测,我们单独在ENSO和TSI的基础上训练了一个具有长短期记忆(LSTM)单元的循环神经网络。结果表明,加入TSI作为预测因子后,ENSO训练误差减小。我们的研究结果表明,利用TSI作为一种预测因子来构建现代非线性全球气候预测模式是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

El Niño and Solar Activity: Granger Causality on a Neural Network

El Niño and Solar Activity: Granger Causality on a Neural Network

El Niño (ENSO), a consequence of changes in ocean circulation patterns, has a significant impact on the global climate and associated economic activity. According to our hypothesis, in addition to internal climatic factors, the ocean circulation regime can be controlled by small changes in total solar irradiation (TSI) occurring in the 11-year solar activity cycle. In this case, positive feedback with a gain of about 10 is possible in near-equatorial regions. In this paper, we attempt to predict monthly averages of an index describing ENSO using TSI as an additional predictor. For prediction, we train a recurrent neural network with a long- and short-term memory (LSTM) unit on ENSO alone and with the addition of TSI. As a result, we find that the ENSO training error is reduced when TSI is added as a predictor. Our result indicates the possibility of using TSI as one of the predictors in constructing modern nonlinear predictive global climate models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信