{"title":"量子中继器星座中卫星和光链路动力学模拟","authors":"Jaspar Meister, Philipp Kleinpaß, Davide Orsucci","doi":"10.1140/epjqt/s40507-025-00307-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum repeaters and satellite-based optical links are complementary technological approaches to overcome the exponential photon loss in optical fibers and thus allow quantum communication on a global scale. We analyze architectures which combine these approaches and use satellites as quantum repeater nodes to distribute entanglement to distant optical ground stations. Here we simulate dynamic, three-dimensional ground station passes, going beyond previous studies that typically consider static satellite links. For this, we numerically solve the equations of motion of the dynamic system consisting of three satellites in low Earth orbit. The model of the optical link takes into account atmospheric attenuation, single-mode fiber coupling, beam wandering and broadening, as well as adaptive optics effects. We derive analytical expressions for the Bell state measurement and associated error rates for quantum memory assisted communications, including retrieval efficiency and state coherence. We consider downlink and uplink architectures for continental and intercontinental connections and evaluate the impact of satellite altitude and inter-satellite distance on the expected entanglement swapping rate. Our simulation model enables us to design different orbital configurations for the satellite constellation and analyze the annual performance of the quantum repeater under realistic conditions.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00307-8","citationCount":"0","resultStr":"{\"title\":\"Simulation of satellite and optical link dynamics in a quantum repeater constellation\",\"authors\":\"Jaspar Meister, Philipp Kleinpaß, Davide Orsucci\",\"doi\":\"10.1140/epjqt/s40507-025-00307-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum repeaters and satellite-based optical links are complementary technological approaches to overcome the exponential photon loss in optical fibers and thus allow quantum communication on a global scale. We analyze architectures which combine these approaches and use satellites as quantum repeater nodes to distribute entanglement to distant optical ground stations. Here we simulate dynamic, three-dimensional ground station passes, going beyond previous studies that typically consider static satellite links. For this, we numerically solve the equations of motion of the dynamic system consisting of three satellites in low Earth orbit. The model of the optical link takes into account atmospheric attenuation, single-mode fiber coupling, beam wandering and broadening, as well as adaptive optics effects. We derive analytical expressions for the Bell state measurement and associated error rates for quantum memory assisted communications, including retrieval efficiency and state coherence. We consider downlink and uplink architectures for continental and intercontinental connections and evaluate the impact of satellite altitude and inter-satellite distance on the expected entanglement swapping rate. Our simulation model enables us to design different orbital configurations for the satellite constellation and analyze the annual performance of the quantum repeater under realistic conditions.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00307-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00307-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00307-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Simulation of satellite and optical link dynamics in a quantum repeater constellation
Quantum repeaters and satellite-based optical links are complementary technological approaches to overcome the exponential photon loss in optical fibers and thus allow quantum communication on a global scale. We analyze architectures which combine these approaches and use satellites as quantum repeater nodes to distribute entanglement to distant optical ground stations. Here we simulate dynamic, three-dimensional ground station passes, going beyond previous studies that typically consider static satellite links. For this, we numerically solve the equations of motion of the dynamic system consisting of three satellites in low Earth orbit. The model of the optical link takes into account atmospheric attenuation, single-mode fiber coupling, beam wandering and broadening, as well as adaptive optics effects. We derive analytical expressions for the Bell state measurement and associated error rates for quantum memory assisted communications, including retrieval efficiency and state coherence. We consider downlink and uplink architectures for continental and intercontinental connections and evaluate the impact of satellite altitude and inter-satellite distance on the expected entanglement swapping rate. Our simulation model enables us to design different orbital configurations for the satellite constellation and analyze the annual performance of the quantum repeater under realistic conditions.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.