Laura Wollesen, Abdeldjelil Nehari, Serge Labor, Guillaume Alombert-Goget, Denis Guignier and Kheirreddine Lebbou
{"title":"用微拉下法研究钼坩埚生长成形蓝宝石中的气泡分布","authors":"Laura Wollesen, Abdeldjelil Nehari, Serge Labor, Guillaume Alombert-Goget, Denis Guignier and Kheirreddine Lebbou","doi":"10.1039/D4CE01077A","DOIUrl":null,"url":null,"abstract":"<p >As a function of the capillary die geometry for fibers (<em>ϕ</em>: 1 mm) and rods (<em>ϕ</em>: 3 mm), the bubble distribution and size have been studied. It is discussed how the pulling rate and the capillary die design impact the bubble propagation during sapphire crystallization from molybdenum crucibles using the micro-pulling down (μ-PD) technique. At a low pulling rate (<em>v</em> = 0.25 mm min<small><sup>−1</sup></small>), for both fibers and rods, the crystallization interface is flat, the bubble concentration is low, and they are regularly distributed in the periphery of the crystals.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 4","pages":" 497-506"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble distribution in shaped sapphire grown from molybdenum crucibles using the micro-pulling down technique\",\"authors\":\"Laura Wollesen, Abdeldjelil Nehari, Serge Labor, Guillaume Alombert-Goget, Denis Guignier and Kheirreddine Lebbou\",\"doi\":\"10.1039/D4CE01077A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a function of the capillary die geometry for fibers (<em>ϕ</em>: 1 mm) and rods (<em>ϕ</em>: 3 mm), the bubble distribution and size have been studied. It is discussed how the pulling rate and the capillary die design impact the bubble propagation during sapphire crystallization from molybdenum crucibles using the micro-pulling down (μ-PD) technique. At a low pulling rate (<em>v</em> = 0.25 mm min<small><sup>−1</sup></small>), for both fibers and rods, the crystallization interface is flat, the bubble concentration is low, and they are regularly distributed in the periphery of the crystals.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 4\",\"pages\":\" 497-506\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01077a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01077a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
作为纤维(φ: 1 mm)和棒(φ: 3 mm)的毛细管模具几何形状的函数,气泡分布和尺寸已经研究。采用微拉下(μ-PD)技术,讨论了拉速和毛细模具设计对钼坩埚蓝宝石结晶过程中气泡扩展的影响。在低拉拔速率下(v = 0.25 mm min - 1),纤维和棒的结晶界面平坦,气泡浓度低,且在晶体外围有规律地分布。
Bubble distribution in shaped sapphire grown from molybdenum crucibles using the micro-pulling down technique
As a function of the capillary die geometry for fibers (ϕ: 1 mm) and rods (ϕ: 3 mm), the bubble distribution and size have been studied. It is discussed how the pulling rate and the capillary die design impact the bubble propagation during sapphire crystallization from molybdenum crucibles using the micro-pulling down (μ-PD) technique. At a low pulling rate (v = 0.25 mm min−1), for both fibers and rods, the crystallization interface is flat, the bubble concentration is low, and they are regularly distributed in the periphery of the crystals.