{"title":"基于支持向量机的分类,用于确定控制传统电表用电量的操作目标:以印尼PT PLN (Persero)的工业和商业电价客户为例","authors":"Galih Arisona;Alief Pascal Taruna;Dwi Irwanto;Arif Bijak Bestari;Wildan Juniawan","doi":"10.1109/ACCESS.2025.3529295","DOIUrl":null,"url":null,"abstract":"Electricity theft remains a significant challenge for PT PLN (Persero), Indonesia’s primary electricity provider, serving over 89 million customers as of 2023. The study focuses on industrial and business tariff customers, using a dataset from 2019 to 2023, which includes monthly consumption data from PLN’s postpaid customers across thirty operational units with the highest Electricity Use Control (P2TL) levels, covering customers with a maximum power of 6,600 VA. This approach differs from previous studies that rely on open or smart meter data, as this study uses conventional meters for data collection. In the dataset used for this research, losses from confirmed electricity theft amounted to approximately IDR 19 billion. This research aims to improve the detection of electricity theft through a machine learning-based model utilizing the Support Vector Machine (SVM) classification technique. The goal is to enhance the P2TL mechanism by accurately identifying potential targets for field verification. Various SVM kernels were tested, including Radial Basis Function (RBF), Linear, Polynomial (Poly), and Sigmoid, alongside classifiers such as SVM, Logistic Regression, Decision Tree, and Naïve Bayes. Results show that the SVM model, particularly with the RBF kernel, achieves optimal performance, with balanced precision and recall, especially with 30 months of historical data. This optimized model contributes to improving PLN’s operational efficiency, offering more accurate identification of electricity theft cases, leading to substantial financial savings by reducing losses from unpaid consumption. The findings offer practical benefits for reducing electricity theft and improving PLN’s monitoring system, especially in industrial and business sectors.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12388-12398"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840176","citationCount":"0","resultStr":"{\"title\":\"Classification Based on the Support Vector Machine for Determining Operational Targets for Controlling Electricity Usage With Conventional Meters: A Case Study of Industrial and Business Tariff Customers From PT PLN (Persero) Indonesia\",\"authors\":\"Galih Arisona;Alief Pascal Taruna;Dwi Irwanto;Arif Bijak Bestari;Wildan Juniawan\",\"doi\":\"10.1109/ACCESS.2025.3529295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity theft remains a significant challenge for PT PLN (Persero), Indonesia’s primary electricity provider, serving over 89 million customers as of 2023. The study focuses on industrial and business tariff customers, using a dataset from 2019 to 2023, which includes monthly consumption data from PLN’s postpaid customers across thirty operational units with the highest Electricity Use Control (P2TL) levels, covering customers with a maximum power of 6,600 VA. This approach differs from previous studies that rely on open or smart meter data, as this study uses conventional meters for data collection. In the dataset used for this research, losses from confirmed electricity theft amounted to approximately IDR 19 billion. This research aims to improve the detection of electricity theft through a machine learning-based model utilizing the Support Vector Machine (SVM) classification technique. The goal is to enhance the P2TL mechanism by accurately identifying potential targets for field verification. Various SVM kernels were tested, including Radial Basis Function (RBF), Linear, Polynomial (Poly), and Sigmoid, alongside classifiers such as SVM, Logistic Regression, Decision Tree, and Naïve Bayes. Results show that the SVM model, particularly with the RBF kernel, achieves optimal performance, with balanced precision and recall, especially with 30 months of historical data. This optimized model contributes to improving PLN’s operational efficiency, offering more accurate identification of electricity theft cases, leading to substantial financial savings by reducing losses from unpaid consumption. The findings offer practical benefits for reducing electricity theft and improving PLN’s monitoring system, especially in industrial and business sectors.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"12388-12398\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840176/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840176/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Classification Based on the Support Vector Machine for Determining Operational Targets for Controlling Electricity Usage With Conventional Meters: A Case Study of Industrial and Business Tariff Customers From PT PLN (Persero) Indonesia
Electricity theft remains a significant challenge for PT PLN (Persero), Indonesia’s primary electricity provider, serving over 89 million customers as of 2023. The study focuses on industrial and business tariff customers, using a dataset from 2019 to 2023, which includes monthly consumption data from PLN’s postpaid customers across thirty operational units with the highest Electricity Use Control (P2TL) levels, covering customers with a maximum power of 6,600 VA. This approach differs from previous studies that rely on open or smart meter data, as this study uses conventional meters for data collection. In the dataset used for this research, losses from confirmed electricity theft amounted to approximately IDR 19 billion. This research aims to improve the detection of electricity theft through a machine learning-based model utilizing the Support Vector Machine (SVM) classification technique. The goal is to enhance the P2TL mechanism by accurately identifying potential targets for field verification. Various SVM kernels were tested, including Radial Basis Function (RBF), Linear, Polynomial (Poly), and Sigmoid, alongside classifiers such as SVM, Logistic Regression, Decision Tree, and Naïve Bayes. Results show that the SVM model, particularly with the RBF kernel, achieves optimal performance, with balanced precision and recall, especially with 30 months of historical data. This optimized model contributes to improving PLN’s operational efficiency, offering more accurate identification of electricity theft cases, leading to substantial financial savings by reducing losses from unpaid consumption. The findings offer practical benefits for reducing electricity theft and improving PLN’s monitoring system, especially in industrial and business sectors.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.