Qiguang Miao;Wentian Xin;Ruyi Liu;Yi Liu;Mengyao Wu;Cheng Shi;Chi-Man Pun
{"title":"自适应陷阱:探索基于骨架的动作识别中自适应的有效性","authors":"Qiguang Miao;Wentian Xin;Ruyi Liu;Yi Liu;Mengyao Wu;Cheng Shi;Chi-Man Pun","doi":"10.1109/TMM.2024.3521774","DOIUrl":null,"url":null,"abstract":"Graph convolution networks (GCNs) have achieved remarkable performance in skeleton-based action recognition by exploiting the adjacency topology of body representation. However, the adaptive strategy adopted by the previous methods to construct the adjacency matrix is not balanced between the performance and the computational cost. We assume this concept of <italic>Adaptive Trap</i>, which can be replaced by multiple autonomous submodules, thereby simultaneously enhancing the dynamic joint representation and effectively reducing network resources. To effectuate the substitution of the adaptive model, we unveil two distinct strategies, both yielding comparable effects. (1) Optimization. <italic>Individuality and Commonality GCNs (IC-GCNs)</i> is proposed to specifically optimize the construction method of the associativity adjacency matrix for adaptive processing. The uniqueness and co-occurrence between different joint points and frames in the skeleton topology are effectively captured through methodologies like preferential fusion of physical information, extreme compression of multi-dimensional channels, and simplification of self-attention mechanism. (2) Replacement. <italic>Auto-Learning GCNs (AL-GCNs)</i> is proposed to boldly remove popular adaptive modules and cleverly utilize human key points as motion compensation to provide dynamic correlation support. AL-GCNs construct a fully learnable group adjacency matrix in both spatial and temporal dimensions, resulting in an elegant and efficient GCN-based model. In addition, three effective tricks for skeleton-based action recognition (Skip-Block, Bayesian Weight Selection Algorithm, and Simplified Dimensional Attention) are exposed and analyzed in this paper. Finally, we employ the variable channel and grouping method to explore the hardware resource bound of the two proposed models. IC-GCN and AL-GCN exhibit impressive performance across NTU-RGB+D 60, NTU-RGB+D 120, NW-UCLA, and UAV-Human datasets, with an exceptional parameter-cost ratio.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"56-71"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Pitfall: Exploring the Effectiveness of Adaptation in Skeleton-Based Action Recognition\",\"authors\":\"Qiguang Miao;Wentian Xin;Ruyi Liu;Yi Liu;Mengyao Wu;Cheng Shi;Chi-Man Pun\",\"doi\":\"10.1109/TMM.2024.3521774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph convolution networks (GCNs) have achieved remarkable performance in skeleton-based action recognition by exploiting the adjacency topology of body representation. However, the adaptive strategy adopted by the previous methods to construct the adjacency matrix is not balanced between the performance and the computational cost. We assume this concept of <italic>Adaptive Trap</i>, which can be replaced by multiple autonomous submodules, thereby simultaneously enhancing the dynamic joint representation and effectively reducing network resources. To effectuate the substitution of the adaptive model, we unveil two distinct strategies, both yielding comparable effects. (1) Optimization. <italic>Individuality and Commonality GCNs (IC-GCNs)</i> is proposed to specifically optimize the construction method of the associativity adjacency matrix for adaptive processing. The uniqueness and co-occurrence between different joint points and frames in the skeleton topology are effectively captured through methodologies like preferential fusion of physical information, extreme compression of multi-dimensional channels, and simplification of self-attention mechanism. (2) Replacement. <italic>Auto-Learning GCNs (AL-GCNs)</i> is proposed to boldly remove popular adaptive modules and cleverly utilize human key points as motion compensation to provide dynamic correlation support. AL-GCNs construct a fully learnable group adjacency matrix in both spatial and temporal dimensions, resulting in an elegant and efficient GCN-based model. In addition, three effective tricks for skeleton-based action recognition (Skip-Block, Bayesian Weight Selection Algorithm, and Simplified Dimensional Attention) are exposed and analyzed in this paper. Finally, we employ the variable channel and grouping method to explore the hardware resource bound of the two proposed models. IC-GCN and AL-GCN exhibit impressive performance across NTU-RGB+D 60, NTU-RGB+D 120, NW-UCLA, and UAV-Human datasets, with an exceptional parameter-cost ratio.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"56-71\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814651/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814651/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adaptive Pitfall: Exploring the Effectiveness of Adaptation in Skeleton-Based Action Recognition
Graph convolution networks (GCNs) have achieved remarkable performance in skeleton-based action recognition by exploiting the adjacency topology of body representation. However, the adaptive strategy adopted by the previous methods to construct the adjacency matrix is not balanced between the performance and the computational cost. We assume this concept of Adaptive Trap, which can be replaced by multiple autonomous submodules, thereby simultaneously enhancing the dynamic joint representation and effectively reducing network resources. To effectuate the substitution of the adaptive model, we unveil two distinct strategies, both yielding comparable effects. (1) Optimization. Individuality and Commonality GCNs (IC-GCNs) is proposed to specifically optimize the construction method of the associativity adjacency matrix for adaptive processing. The uniqueness and co-occurrence between different joint points and frames in the skeleton topology are effectively captured through methodologies like preferential fusion of physical information, extreme compression of multi-dimensional channels, and simplification of self-attention mechanism. (2) Replacement. Auto-Learning GCNs (AL-GCNs) is proposed to boldly remove popular adaptive modules and cleverly utilize human key points as motion compensation to provide dynamic correlation support. AL-GCNs construct a fully learnable group adjacency matrix in both spatial and temporal dimensions, resulting in an elegant and efficient GCN-based model. In addition, three effective tricks for skeleton-based action recognition (Skip-Block, Bayesian Weight Selection Algorithm, and Simplified Dimensional Attention) are exposed and analyzed in this paper. Finally, we employ the variable channel and grouping method to explore the hardware resource bound of the two proposed models. IC-GCN and AL-GCN exhibit impressive performance across NTU-RGB+D 60, NTU-RGB+D 120, NW-UCLA, and UAV-Human datasets, with an exceptional parameter-cost ratio.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.