{"title":"利用优化的cnn实现更快、更智能的胸部x射线分类","authors":"Hassen Louati;Ali Louati;Khalid Mansour;Elham Kariri","doi":"10.1109/ACCESS.2025.3529206","DOIUrl":null,"url":null,"abstract":"X-ray imaging is essential in medical diagnostics, particularly for identifying anomalies like respiratory diseases. However, building accurate and efficient deep learning models for X-ray image classification remains challenging, requiring both optimized architectures and low computational complexity. In this paper, we present a three-stage framework to enhance X-ray image classification using Neural Architecture Search (NAS), Transfer Learning, and Model Compression via filter pruning, specifically targeting the ChestX-Ray14 dataset. First, NAS is employed to automatically discover the optimal convolutional neural network (CNN) architecture tailored to the ChestX-Ray14 dataset, reducing the need for extensive manual tuning. Subsequently, we leverage transfer learning by incorporating pre-trained models, which enhances the model’s generalizability and reduces dependency on large volumes of labeled X-ray data. Finally, model compression through filter pruning, driven by evolutionary algorithms, trims redundant parameters to improve computational efficiency while preserving model accuracy. Experimental results demonstrate that this approach not only boosts classification accuracy on the ChestX-Ray14 dataset but also significantly reduces model size, making it suitable for deployment in resource-constrained environments, such as mobile and edge devices. This framework provides a practical, scalable solution to improve both the accuracy and efficiency of medical image classification.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"10070-10082"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839370","citationCount":"0","resultStr":"{\"title\":\"Achieving Faster and Smarter Chest X-Ray Classification With Optimized CNNs\",\"authors\":\"Hassen Louati;Ali Louati;Khalid Mansour;Elham Kariri\",\"doi\":\"10.1109/ACCESS.2025.3529206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray imaging is essential in medical diagnostics, particularly for identifying anomalies like respiratory diseases. However, building accurate and efficient deep learning models for X-ray image classification remains challenging, requiring both optimized architectures and low computational complexity. In this paper, we present a three-stage framework to enhance X-ray image classification using Neural Architecture Search (NAS), Transfer Learning, and Model Compression via filter pruning, specifically targeting the ChestX-Ray14 dataset. First, NAS is employed to automatically discover the optimal convolutional neural network (CNN) architecture tailored to the ChestX-Ray14 dataset, reducing the need for extensive manual tuning. Subsequently, we leverage transfer learning by incorporating pre-trained models, which enhances the model’s generalizability and reduces dependency on large volumes of labeled X-ray data. Finally, model compression through filter pruning, driven by evolutionary algorithms, trims redundant parameters to improve computational efficiency while preserving model accuracy. Experimental results demonstrate that this approach not only boosts classification accuracy on the ChestX-Ray14 dataset but also significantly reduces model size, making it suitable for deployment in resource-constrained environments, such as mobile and edge devices. This framework provides a practical, scalable solution to improve both the accuracy and efficiency of medical image classification.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"10070-10082\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839370\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839370/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839370/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Achieving Faster and Smarter Chest X-Ray Classification With Optimized CNNs
X-ray imaging is essential in medical diagnostics, particularly for identifying anomalies like respiratory diseases. However, building accurate and efficient deep learning models for X-ray image classification remains challenging, requiring both optimized architectures and low computational complexity. In this paper, we present a three-stage framework to enhance X-ray image classification using Neural Architecture Search (NAS), Transfer Learning, and Model Compression via filter pruning, specifically targeting the ChestX-Ray14 dataset. First, NAS is employed to automatically discover the optimal convolutional neural network (CNN) architecture tailored to the ChestX-Ray14 dataset, reducing the need for extensive manual tuning. Subsequently, we leverage transfer learning by incorporating pre-trained models, which enhances the model’s generalizability and reduces dependency on large volumes of labeled X-ray data. Finally, model compression through filter pruning, driven by evolutionary algorithms, trims redundant parameters to improve computational efficiency while preserving model accuracy. Experimental results demonstrate that this approach not only boosts classification accuracy on the ChestX-Ray14 dataset but also significantly reduces model size, making it suitable for deployment in resource-constrained environments, such as mobile and edge devices. This framework provides a practical, scalable solution to improve both the accuracy and efficiency of medical image classification.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.