DPStyler:用于无源域泛化的动态PromptStyler

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunlong Tang;Yuxuan Wan;Lei Qi;Xin Geng
{"title":"DPStyler:用于无源域泛化的动态PromptStyler","authors":"Yunlong Tang;Yuxuan Wan;Lei Qi;Xin Geng","doi":"10.1109/TMM.2024.3521671","DOIUrl":null,"url":null,"abstract":"Source-Free Domain Generalization (SFDG) aims to develop a model that works for unseen target domains without relying on any source domain. Research in SFDG primarily bulids upon the existing knowledge of large-scale vision-language models and utilizes the pre-trained model's joint vision-language space to simulate style transfer across domains, thus eliminating the dependency on source domain images. However, how to efficiently simulate rich and diverse styles using text prompts, and how to extract domain-invariant information useful for classification from features that contain both semantic and style information after the encoder, are directions that merit improvement. In this paper, we introduce Dynamic PromptStyler (DPStyler), comprising Style Generation and Style Removal modules to address these issues. The Style Generation module refreshes all styles at every training epoch, while the Style Removal module eliminates variations in the encoder's output features caused by input styles. Moreover, since the Style Generation module, responsible for generating style word vectors using random sampling or style mixing, makes the model sensitive to input text prompts, we introduce a model ensemble method to mitigate this sensitivity. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods on benchmark datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"120-132"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization\",\"authors\":\"Yunlong Tang;Yuxuan Wan;Lei Qi;Xin Geng\",\"doi\":\"10.1109/TMM.2024.3521671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source-Free Domain Generalization (SFDG) aims to develop a model that works for unseen target domains without relying on any source domain. Research in SFDG primarily bulids upon the existing knowledge of large-scale vision-language models and utilizes the pre-trained model's joint vision-language space to simulate style transfer across domains, thus eliminating the dependency on source domain images. However, how to efficiently simulate rich and diverse styles using text prompts, and how to extract domain-invariant information useful for classification from features that contain both semantic and style information after the encoder, are directions that merit improvement. In this paper, we introduce Dynamic PromptStyler (DPStyler), comprising Style Generation and Style Removal modules to address these issues. The Style Generation module refreshes all styles at every training epoch, while the Style Removal module eliminates variations in the encoder's output features caused by input styles. Moreover, since the Style Generation module, responsible for generating style word vectors using random sampling or style mixing, makes the model sensitive to input text prompts, we introduce a model ensemble method to mitigate this sensitivity. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods on benchmark datasets.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"120-132\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824918/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10824918/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无源域泛化(SFDG)旨在开发一种不依赖任何源域的未知目标域模型。SFDG的研究主要建立在大规模视觉语言模型的现有知识基础上,利用预训练模型的联合视觉语言空间来模拟跨领域的风格迁移,从而消除了对源领域图像的依赖。然而,如何利用文本提示有效地模拟丰富多样的样式,以及如何从包含语义和样式信息的特征中提取对分类有用的域不变信息,是值得改进的方向。在本文中,我们介绍了Dynamic PromptStyler (DPStyler),它包括样式生成和样式移除模块来解决这些问题。样式生成模块在每个训练阶段刷新所有样式,而样式移除模块消除由输入样式引起的编码器输出特征的变化。此外,由于负责使用随机采样或风格混合生成风格词向量的风格生成模块使模型对输入文本提示敏感,因此我们引入了模型集成方法来减轻这种敏感性。大量的实验表明,我们的框架在基准数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization
Source-Free Domain Generalization (SFDG) aims to develop a model that works for unseen target domains without relying on any source domain. Research in SFDG primarily bulids upon the existing knowledge of large-scale vision-language models and utilizes the pre-trained model's joint vision-language space to simulate style transfer across domains, thus eliminating the dependency on source domain images. However, how to efficiently simulate rich and diverse styles using text prompts, and how to extract domain-invariant information useful for classification from features that contain both semantic and style information after the encoder, are directions that merit improvement. In this paper, we introduce Dynamic PromptStyler (DPStyler), comprising Style Generation and Style Removal modules to address these issues. The Style Generation module refreshes all styles at every training epoch, while the Style Removal module eliminates variations in the encoder's output features caused by input styles. Moreover, since the Style Generation module, responsible for generating style word vectors using random sampling or style mixing, makes the model sensitive to input text prompts, we introduce a model ensemble method to mitigate this sensitivity. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods on benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信