{"title":"基于PCA分类器的小波散射网络与CNN特征融合的植物叶片识别","authors":"S. Gowthaman;Abhishek Das","doi":"10.1109/ACCESS.2025.3528992","DOIUrl":null,"url":null,"abstract":"Deep learning models, particularly Convolutional Neural Networks (CNNs), are pivotal in enabling botanists to efficiently identify plant species, which is essential for applications in medicine, agriculture, and the food industry. Unlike traditional machine learning methods that often struggle to capture the intricate features of leaves, CNNs are well-suited for this task. However, their reliance on large datasets and substantial computational resources poses a significant challenge. To overcome these challenges, we present a new approach that combines features from Wavelet Scattering Networks (WSNs) and MobileNetV2. WSNs are particularly effective in capturing texture patterns using fixed filters that do not require a learning process, making them effective even with smaller datasets. Conversely, MobileNetV2 deep layer features complement this by capturing more complex, high-level features like shapes and edges, which are essential for distinguishing between different plant species. The extracted features are classified using a PCA-based classifier, which reduces redundancy and enhances accuracy. We tested our approach on the Flavia and Folio datasets, achieving impressive accuracies of 98.75% and 98.7%, respectively. Additionally, we used the Cope dataset to assess the scalability of our model across different classes and the UK Leaf dataset to evaluate its performance under varying background and noise conditions. This approach delivers good accuracy while minimizing computational demands, providing a practical and efficient solution for automated leaf classification, particularly in resource-constrained environments.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"11594-11608"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839358","citationCount":"0","resultStr":"{\"title\":\"Plant Leaf Identification Using Feature Fusion of Wavelet Scattering Network and CNN With PCA Classifier\",\"authors\":\"S. Gowthaman;Abhishek Das\",\"doi\":\"10.1109/ACCESS.2025.3528992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models, particularly Convolutional Neural Networks (CNNs), are pivotal in enabling botanists to efficiently identify plant species, which is essential for applications in medicine, agriculture, and the food industry. Unlike traditional machine learning methods that often struggle to capture the intricate features of leaves, CNNs are well-suited for this task. However, their reliance on large datasets and substantial computational resources poses a significant challenge. To overcome these challenges, we present a new approach that combines features from Wavelet Scattering Networks (WSNs) and MobileNetV2. WSNs are particularly effective in capturing texture patterns using fixed filters that do not require a learning process, making them effective even with smaller datasets. Conversely, MobileNetV2 deep layer features complement this by capturing more complex, high-level features like shapes and edges, which are essential for distinguishing between different plant species. The extracted features are classified using a PCA-based classifier, which reduces redundancy and enhances accuracy. We tested our approach on the Flavia and Folio datasets, achieving impressive accuracies of 98.75% and 98.7%, respectively. Additionally, we used the Cope dataset to assess the scalability of our model across different classes and the UK Leaf dataset to evaluate its performance under varying background and noise conditions. This approach delivers good accuracy while minimizing computational demands, providing a practical and efficient solution for automated leaf classification, particularly in resource-constrained environments.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"11594-11608\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839358\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839358/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839358/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Plant Leaf Identification Using Feature Fusion of Wavelet Scattering Network and CNN With PCA Classifier
Deep learning models, particularly Convolutional Neural Networks (CNNs), are pivotal in enabling botanists to efficiently identify plant species, which is essential for applications in medicine, agriculture, and the food industry. Unlike traditional machine learning methods that often struggle to capture the intricate features of leaves, CNNs are well-suited for this task. However, their reliance on large datasets and substantial computational resources poses a significant challenge. To overcome these challenges, we present a new approach that combines features from Wavelet Scattering Networks (WSNs) and MobileNetV2. WSNs are particularly effective in capturing texture patterns using fixed filters that do not require a learning process, making them effective even with smaller datasets. Conversely, MobileNetV2 deep layer features complement this by capturing more complex, high-level features like shapes and edges, which are essential for distinguishing between different plant species. The extracted features are classified using a PCA-based classifier, which reduces redundancy and enhances accuracy. We tested our approach on the Flavia and Folio datasets, achieving impressive accuracies of 98.75% and 98.7%, respectively. Additionally, we used the Cope dataset to assess the scalability of our model across different classes and the UK Leaf dataset to evaluate its performance under varying background and noise conditions. This approach delivers good accuracy while minimizing computational demands, providing a practical and efficient solution for automated leaf classification, particularly in resource-constrained environments.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.