{"title":"用于sar到光学图像转换的地理特征标记化转换器","authors":"Hongbo Liang;Xuezhi Yang;Xiangyu Yang;Jinjin Luo;Jiajia Zhu","doi":"10.1109/JSTARS.2024.3523274","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) image to optical image translation not only assists information interpretability, but also fills the gaps in optical applications due to weather and light limitations. However, several studies have pointed out that specialized methods heavily struggle to deliver images with widely varying optical imaging styles, thus, resulting in poor image translation with disharmonious and repetitive artifacts. Another critical issue attributes to the scarcity of geographical prior knowledge. The generator always attempts to produce images within a narrow scope of the data space, which severely restricts the semantic correspondence between SAR content and optical styles. In this article, we introduce a novel tokenization, namely geographical imaging tokenizer (GIT), which captures imaging style of ground materials in the optical image. Based on the GIT, we propose a geographical feature tokenization transformer framework (GFTT) that discovers the consensus between SAR and optical images. In addition, we leverage a self-supervisory task to encourage the transformer to learn meaningful semantic correspondence from local and global style patterns. Finally, we utilize the noise-contrastive estimation loss to maximize mutual information between the input and translated image. Through qualitative and quantitative experimental evaluations, we verify the reliability of the proposed GIT that aligns with authentic expressions of the optical observation scenario, and indicates the superiority of GFTT in contrast to the state-of-the-art algorithms.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"2975-2989"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816574","citationCount":"0","resultStr":"{\"title\":\"GFTT: Geographical Feature Tokenization Transformer for SAR-to-Optical Image Translation\",\"authors\":\"Hongbo Liang;Xuezhi Yang;Xiangyu Yang;Jinjin Luo;Jiajia Zhu\",\"doi\":\"10.1109/JSTARS.2024.3523274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) image to optical image translation not only assists information interpretability, but also fills the gaps in optical applications due to weather and light limitations. However, several studies have pointed out that specialized methods heavily struggle to deliver images with widely varying optical imaging styles, thus, resulting in poor image translation with disharmonious and repetitive artifacts. Another critical issue attributes to the scarcity of geographical prior knowledge. The generator always attempts to produce images within a narrow scope of the data space, which severely restricts the semantic correspondence between SAR content and optical styles. In this article, we introduce a novel tokenization, namely geographical imaging tokenizer (GIT), which captures imaging style of ground materials in the optical image. Based on the GIT, we propose a geographical feature tokenization transformer framework (GFTT) that discovers the consensus between SAR and optical images. In addition, we leverage a self-supervisory task to encourage the transformer to learn meaningful semantic correspondence from local and global style patterns. Finally, we utilize the noise-contrastive estimation loss to maximize mutual information between the input and translated image. Through qualitative and quantitative experimental evaluations, we verify the reliability of the proposed GIT that aligns with authentic expressions of the optical observation scenario, and indicates the superiority of GFTT in contrast to the state-of-the-art algorithms.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"2975-2989\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816574\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816574/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816574/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GFTT: Geographical Feature Tokenization Transformer for SAR-to-Optical Image Translation
Synthetic aperture radar (SAR) image to optical image translation not only assists information interpretability, but also fills the gaps in optical applications due to weather and light limitations. However, several studies have pointed out that specialized methods heavily struggle to deliver images with widely varying optical imaging styles, thus, resulting in poor image translation with disharmonious and repetitive artifacts. Another critical issue attributes to the scarcity of geographical prior knowledge. The generator always attempts to produce images within a narrow scope of the data space, which severely restricts the semantic correspondence between SAR content and optical styles. In this article, we introduce a novel tokenization, namely geographical imaging tokenizer (GIT), which captures imaging style of ground materials in the optical image. Based on the GIT, we propose a geographical feature tokenization transformer framework (GFTT) that discovers the consensus between SAR and optical images. In addition, we leverage a self-supervisory task to encourage the transformer to learn meaningful semantic correspondence from local and global style patterns. Finally, we utilize the noise-contrastive estimation loss to maximize mutual information between the input and translated image. Through qualitative and quantitative experimental evaluations, we verify the reliability of the proposed GIT that aligns with authentic expressions of the optical observation scenario, and indicates the superiority of GFTT in contrast to the state-of-the-art algorithms.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.