{"title":"零射击MRI重构的去噪知识转移模型","authors":"Ruizhi Hou;Fang Li","doi":"10.1109/TCI.2025.3525960","DOIUrl":null,"url":null,"abstract":"Though fully-supervised deep learning methods have made remarkable achievements in accelerated magnetic resonance imaging (MRI) reconstruction, the fully-sampled or high-quality data is unavailable in many scenarios. Zero-shot learning enables training on under-sampled data. However, the limited information in under-sampled data inhibits the neural network from realizing its full potential. This paper proposes a novel learning framework to enhance the diversity of the learned prior in zero-shot learning and improve the reconstruction quality. It consists of three stages: multi-weighted zero-shot ensemble learning, denoising knowledge transfer, and model-guided reconstruction. In the first stage, the ensemble models are trained using a multi-weighted loss function in k-space, yielding results with higher quality and diversity. In the second stage, we propose to use the deep denoiser to distill the knowledge in the ensemble models. Additionally, the denoiser is initialized using weights pre-trained on nature images, combining external knowledge with the information from under-sampled data. In the third stage, the denoiser is plugged into the iteration algorithm to produce the final reconstructed image. Extensive experiments demonstrate that our proposed framework surpasses existing zero-shot methods and can flexibly adapt to different datasets. In multi-coil reconstruction, our proposed zero-shot learning framework outperforms the state-of-the-art denoising-based methods.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"52-64"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising Knowledge Transfer Model for Zero-Shot MRI Reconstruction\",\"authors\":\"Ruizhi Hou;Fang Li\",\"doi\":\"10.1109/TCI.2025.3525960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though fully-supervised deep learning methods have made remarkable achievements in accelerated magnetic resonance imaging (MRI) reconstruction, the fully-sampled or high-quality data is unavailable in many scenarios. Zero-shot learning enables training on under-sampled data. However, the limited information in under-sampled data inhibits the neural network from realizing its full potential. This paper proposes a novel learning framework to enhance the diversity of the learned prior in zero-shot learning and improve the reconstruction quality. It consists of three stages: multi-weighted zero-shot ensemble learning, denoising knowledge transfer, and model-guided reconstruction. In the first stage, the ensemble models are trained using a multi-weighted loss function in k-space, yielding results with higher quality and diversity. In the second stage, we propose to use the deep denoiser to distill the knowledge in the ensemble models. Additionally, the denoiser is initialized using weights pre-trained on nature images, combining external knowledge with the information from under-sampled data. In the third stage, the denoiser is plugged into the iteration algorithm to produce the final reconstructed image. Extensive experiments demonstrate that our proposed framework surpasses existing zero-shot methods and can flexibly adapt to different datasets. In multi-coil reconstruction, our proposed zero-shot learning framework outperforms the state-of-the-art denoising-based methods.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"11 \",\"pages\":\"52-64\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10836837/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836837/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Denoising Knowledge Transfer Model for Zero-Shot MRI Reconstruction
Though fully-supervised deep learning methods have made remarkable achievements in accelerated magnetic resonance imaging (MRI) reconstruction, the fully-sampled or high-quality data is unavailable in many scenarios. Zero-shot learning enables training on under-sampled data. However, the limited information in under-sampled data inhibits the neural network from realizing its full potential. This paper proposes a novel learning framework to enhance the diversity of the learned prior in zero-shot learning and improve the reconstruction quality. It consists of three stages: multi-weighted zero-shot ensemble learning, denoising knowledge transfer, and model-guided reconstruction. In the first stage, the ensemble models are trained using a multi-weighted loss function in k-space, yielding results with higher quality and diversity. In the second stage, we propose to use the deep denoiser to distill the knowledge in the ensemble models. Additionally, the denoiser is initialized using weights pre-trained on nature images, combining external knowledge with the information from under-sampled data. In the third stage, the denoiser is plugged into the iteration algorithm to produce the final reconstructed image. Extensive experiments demonstrate that our proposed framework surpasses existing zero-shot methods and can flexibly adapt to different datasets. In multi-coil reconstruction, our proposed zero-shot learning framework outperforms the state-of-the-art denoising-based methods.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.