{"title":"定制通道修剪:通过自适应稀疏性正则化实现目标模型复杂性","authors":"Suwoong Lee;Yunho Jeon;Seungjae Lee;Junmo Kim","doi":"10.1109/ACCESS.2025.3529465","DOIUrl":null,"url":null,"abstract":"In deep learning, the size and complexity of neural networks have been rapidly increased to achieve higher performance. However, this poses a challenge when utilized in resource-limited environments, such as mobile devices, particularly when trying to preserve the network’s performance. To address this problem, structured pruning has been widely studied as it effectively reduces the network with little impact on performance. To enhance a model’s performance with limited resources, it is crucial to 1) utilize all available resources and 2) maximize performance within these limitations. However, existing pruning methods often require iterations of training and pruning or many experiments to find hyperparameters that satisfy a given budget or forcibly truncate parameters with a given budget, resulting in performance loss. To solve this problem, we propose a novel channel pruning method called Tailored Channel Pruning. Given a target budget (e.g., FLOPs and parameters), our method outputs a tailored network that automatically takes the budget into account during training and satisfies the target budget. During the integrated training and pruning process, our method adaptively controls sparsity regularization and selects important weights that can help maximize the accuracy within the target budget. Through various experiments on the CIFAR-10 and ImageNet datasets, we demonstrate the effectiveness of the proposed method and achieve state-of-the-art accuracy after pruning.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12113-12126"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840184","citationCount":"0","resultStr":"{\"title\":\"Tailored Channel Pruning: Achieve Targeted Model Complexity Through Adaptive Sparsity Regularization\",\"authors\":\"Suwoong Lee;Yunho Jeon;Seungjae Lee;Junmo Kim\",\"doi\":\"10.1109/ACCESS.2025.3529465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep learning, the size and complexity of neural networks have been rapidly increased to achieve higher performance. However, this poses a challenge when utilized in resource-limited environments, such as mobile devices, particularly when trying to preserve the network’s performance. To address this problem, structured pruning has been widely studied as it effectively reduces the network with little impact on performance. To enhance a model’s performance with limited resources, it is crucial to 1) utilize all available resources and 2) maximize performance within these limitations. However, existing pruning methods often require iterations of training and pruning or many experiments to find hyperparameters that satisfy a given budget or forcibly truncate parameters with a given budget, resulting in performance loss. To solve this problem, we propose a novel channel pruning method called Tailored Channel Pruning. Given a target budget (e.g., FLOPs and parameters), our method outputs a tailored network that automatically takes the budget into account during training and satisfies the target budget. During the integrated training and pruning process, our method adaptively controls sparsity regularization and selects important weights that can help maximize the accuracy within the target budget. Through various experiments on the CIFAR-10 and ImageNet datasets, we demonstrate the effectiveness of the proposed method and achieve state-of-the-art accuracy after pruning.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"12113-12126\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840184/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840184/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Tailored Channel Pruning: Achieve Targeted Model Complexity Through Adaptive Sparsity Regularization
In deep learning, the size and complexity of neural networks have been rapidly increased to achieve higher performance. However, this poses a challenge when utilized in resource-limited environments, such as mobile devices, particularly when trying to preserve the network’s performance. To address this problem, structured pruning has been widely studied as it effectively reduces the network with little impact on performance. To enhance a model’s performance with limited resources, it is crucial to 1) utilize all available resources and 2) maximize performance within these limitations. However, existing pruning methods often require iterations of training and pruning or many experiments to find hyperparameters that satisfy a given budget or forcibly truncate parameters with a given budget, resulting in performance loss. To solve this problem, we propose a novel channel pruning method called Tailored Channel Pruning. Given a target budget (e.g., FLOPs and parameters), our method outputs a tailored network that automatically takes the budget into account during training and satisfies the target budget. During the integrated training and pruning process, our method adaptively controls sparsity regularization and selects important weights that can help maximize the accuracy within the target budget. Through various experiments on the CIFAR-10 and ImageNet datasets, we demonstrate the effectiveness of the proposed method and achieve state-of-the-art accuracy after pruning.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.