Tomaso Fontanini;Claudio Ferrari;Giuseppe Lisanti;Massimo Bertozzi;Andrea Prati
{"title":"基于类别自适应交叉注意的语义图像合成","authors":"Tomaso Fontanini;Claudio Ferrari;Giuseppe Lisanti;Massimo Bertozzi;Andrea Prati","doi":"10.1109/ACCESS.2025.3529216","DOIUrl":null,"url":null,"abstract":"In semantic image synthesis the state of the art is dominated by methods that use customized variants of the SPatially-Adaptive DE-normalization (SPADE) layers, which allow for good visual generation quality and editing versatility. By design, such layers learn pixel-wise modulation parameters to de-normalize the generator activations based on the semantic class each pixel belongs to. Thus, they tend to overlook global image statistics, ultimately leading to unconvincing local style editing and causing global inconsistencies such as color or illumination distribution shifts. Also, SPADE layers require the semantic segmentation mask for mapping styles in the generator, preventing shape manipulations without manual intervention. In response, we designed a novel architecture where cross-attention layers are used in place of SPADE for learning shape-style correlations and so conditioning the image generation process. Our model inherits the versatility of SPADE, at the same time obtaining state-of-the-art generation quality improving FID score by 5.6%, 1.4% and 3.4% on CelebMask-HQ, Ade20k and DeepFashion datasets respectively, as well as improved global and local style transfer. Code and models available at <uri>https://github.com/TFonta/CA2SIS</uri>.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"10326-10339"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841835","citationCount":"0","resultStr":"{\"title\":\"Semantic Image Synthesis via Class-Adaptive Cross-Attention\",\"authors\":\"Tomaso Fontanini;Claudio Ferrari;Giuseppe Lisanti;Massimo Bertozzi;Andrea Prati\",\"doi\":\"10.1109/ACCESS.2025.3529216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semantic image synthesis the state of the art is dominated by methods that use customized variants of the SPatially-Adaptive DE-normalization (SPADE) layers, which allow for good visual generation quality and editing versatility. By design, such layers learn pixel-wise modulation parameters to de-normalize the generator activations based on the semantic class each pixel belongs to. Thus, they tend to overlook global image statistics, ultimately leading to unconvincing local style editing and causing global inconsistencies such as color or illumination distribution shifts. Also, SPADE layers require the semantic segmentation mask for mapping styles in the generator, preventing shape manipulations without manual intervention. In response, we designed a novel architecture where cross-attention layers are used in place of SPADE for learning shape-style correlations and so conditioning the image generation process. Our model inherits the versatility of SPADE, at the same time obtaining state-of-the-art generation quality improving FID score by 5.6%, 1.4% and 3.4% on CelebMask-HQ, Ade20k and DeepFashion datasets respectively, as well as improved global and local style transfer. Code and models available at <uri>https://github.com/TFonta/CA2SIS</uri>.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"10326-10339\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841835\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10841835/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841835/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Semantic Image Synthesis via Class-Adaptive Cross-Attention
In semantic image synthesis the state of the art is dominated by methods that use customized variants of the SPatially-Adaptive DE-normalization (SPADE) layers, which allow for good visual generation quality and editing versatility. By design, such layers learn pixel-wise modulation parameters to de-normalize the generator activations based on the semantic class each pixel belongs to. Thus, they tend to overlook global image statistics, ultimately leading to unconvincing local style editing and causing global inconsistencies such as color or illumination distribution shifts. Also, SPADE layers require the semantic segmentation mask for mapping styles in the generator, preventing shape manipulations without manual intervention. In response, we designed a novel architecture where cross-attention layers are used in place of SPADE for learning shape-style correlations and so conditioning the image generation process. Our model inherits the versatility of SPADE, at the same time obtaining state-of-the-art generation quality improving FID score by 5.6%, 1.4% and 3.4% on CelebMask-HQ, Ade20k and DeepFashion datasets respectively, as well as improved global and local style transfer. Code and models available at https://github.com/TFonta/CA2SIS.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.